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RESUMO
Introdução: O peixe-zebra (Danio rerio) é um excelente organismo modelo para o estudo do desenvolvimento dos vertebrados. Este 
facto deve-se à produção de grandes posturas, que podem atingir 200 embriões a cada sete dias, e ao facto dos embriões serem 
pequenos, transparentes e com um rápido desenvolvimento externo. 
Material e Métodos: Usando ferramentas de pesquisa bibliográfica científica disponíveis online e utilizando as palavras-chave “Ze-
brafish”, “biomedical research”, “human disease” e “drug screening”, avaliámos estudos originais e revisões indexadas na PubMed.
Resultados: Neste artigo de revisão fazemos um resumo do trabalho realizado com este modelo no melhoramento do conhecimento 
de várias doenças humanas. Fizemos ainda um breve relato da investigação biomédica realizada em Portugal com o modelo de peixe-
zebra.
Discussão: Têm sido desenvolvidas poderosas ferramentas genéticas e de microscopia in vivo, que também tornaram o peixe-zebra 
num modelo valioso em investigação biomédica. A conjugação destes atributos com a optimização de sistemas automatizados de tria-
gem de medicamentos, transformaram o peixe-zebra num top model da investigação em biomedicina, nomeadamente na triagem de 
compostos químicos com efeitos terapêuticos e em testes de toxicidade. Além disso, com a otimização da tecnologia dos xenografos, 
será possível usar o peixe-zebra na escolha de uma terapia personalizada.
Conclusão: O peixe-zebra é um excelente organismo modelo na pesquisa biomédica, em screens de medicamentos e na terapia clinica.
Palavras-chave: Avaliação Pré-Clínica de Medicamentos; Investigação Biomédica; Modelos Animais de Doença; Peixe Zebra.

ABSTRACT
Introduction: Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large 
clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, trans-
parent and undergo rapid external development. 
Material and Methods: Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, 
human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed.
Results: In this review we summarized work conducted with this model for the advancement of our knowledge related to several human 
diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model.
Discussion: Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical 
research. The combination of these properties with the optimization of automated systems for drug screening has transformed the 
zebrafish into “a top model” in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts 
technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient.
Conclusion: Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.
Keywords: Biomedical Research; Disease Models, Animal; Drug Evaluation, Preclinical; Zebrafish.

INTRODUCTION
 The zebrafish (Danio rerio) is a tropical freshwater fish 
native to the northern Indian subcontinent (Fig.s 1A and 
1B). The species arose in the Ganges region in eastern In-
dia, and is commonly found in slow-moving or stagnant wa-
ter.1 Due to zebrafish large fecundity and fertility rates it has 
become an important model organism for genetic studies. It 
started as a great model for vertebrate embryonic develop-
ment, due to its transparency and optic clearance, to be-
come an excellent model in adult stem cell and regenerative 
medicine.2 Zebrafish embryos, larvae and adults are now 
commonly used as a model for accessing gene function in 
several human diseases.
 Zebrafish importance as a research vertebrate model 
system in the field of biomedicine has been strengthened by 
their amenity for large-scale forward genetic screens, such 
as those known as the Tübingen and Boston screens.3 Gene 

knockdown can also be achieved transiently and effectively 
with Morpholino (MO) antisense oligonucleotide technology 
or in a permanent way with the use of custom zinc finger 
nucleases (ZFNs),4 and transcription activator-like effector 
nucleases (TALENs).5 More recently, another technology 
based on bacterial clustered, regularly interspaced, short 
palindromic repeats (CRISPR) and associated (Cas) sys-
tems (CRISPR-Cas) was shown to function in vivo to in-
duce targeted genetic modifications in zebrafish embryos 
in a cheaper and equally efficient way.6 These technologies 
have been used to introduce locus-specific double-stranded 
breaks in the zebrafish genome, generating many mutant 
alleles that copy human disease loci. Thus, both forward 
and reverse genetic tools are available. Additionally, zebra-
fish allows for excellent quality in vivo and ex vivo imaging,7 
offering the choice among several powerful techniques such 
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as fluorescent confocal microscopy, or even bright field live 
video microscopy. Furthermore, the research community 
is supported by an excellent curated database of genetic, 
genomic, and developmental information - the Zebrafish 
Model Organism Database (ZFIN).8

 As a vertebrate model, zebrafish possess several ad-
vantages, such as a fully sequenced genome, a very rapid 
embryologic development outside of the mother’s body 
(Fig.s 1C and 1D), and a well-characterized behavior of 
easy observation. Moreover, there are several mutant and 
transgenic strains available. One example is the casper mu-
tant strain with transparent skin in the adult fish, allowing for 

detailed visualization of organs and cellular activity, circula-
tion, metastasis, among other phenomena.9 Zebrafish has 
been shown to be similar to mammalian biological models 
when it comes to toxicity tolerance and circadian rhythms.10 
Nevertheless, they are capable of regenerating several tis-
sues, like fins,11 heart,2 photoreceptor cells and retinal neu-
rons,12 and even spinal cord.13 Furthermore, several studies 
have been made over the years in development and dif-
ferentiation of the nervous system in zebrafish, allowing for 
the mapping of their brain networks14 which will facilitate the 
study of human neurological diseases. Altogether the tools 
available and the plasticity of this biological model allowed 

 

Figure 1 - A) Adult male zebrafish (12 months old). B) Adult female zebrafish (12 months old). C) 24 hpf (hours post fertilization) zebrafish 
embryo. D) 48 hpf zebrafish larvae. E) Schematic ciliary structure.
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for the establishment of zebrafish as a human disease mod-
el for cancer, cardiovascular and immune system diseases, 
and many others. 
 In this review we will emphasize the role of zebrafish, as 
a biomedical vertebrate model. We will focus on five main 
human illnesses, chosen for their high prevalence or their 
chronicity: cancer, diabetes and lipid-related diseases, car-
diovascular disease, neurodegeneration and ciliopathies. 
We will also report the use of zebrafish in drug screening 
and the translational work currently being done with zebraf-
ish in Portugal.

Zebrafish as a Human Disease Model
1. Cancer
 Zebrafish was first used in cancer research during the 
1960s, when Stanton et al. used it to test the effects of car-
cinogens.15 Zebrafish have a very low rate of spontaneous 
neoplasia, with only ~10% of zebrafish developing a tumor 
over their lifetime. Nevertheless, when exposed to carcino-
genic agents such as DENA (diethylnitrosamine), MNNG 
(N-methyl-N-nitro-N-nitrosoguanidine), and DMBA (7.12 
- dimethylbenz(a)anthracene), the fish will develop can-
cer.15–18 Furthermore, zebrafish has proven to be an ideal 
model to study the malignancy of several tumors by means 
of tumor transplantation assays.19 These were shown to be 
robust and have the added advantage of the fish high fe-
cundity, providing high numbers of donor and recipient fish. 
Not only have several types of cancer been studied with this 
model, such as leukemia,20,21 melanoma, endocrine or liver 
cancer16,19,20 but more importantly, by means of the xeno-
transplantation of human tumor cells into zebrafish embryos 
(xenografts) it is possible to address tumor cell migration, 
metastasis, angiogenesis,24-26 and also the effects of poten-
tial therapeutic targets.19 Together with the easily available 
forward and reverse genetic tools, and the non-invasive in 
vivo imaging technology, these characteristics have made of 
zebrafish an ideal vertebrate model to study cancer.27

 Notwithstanding the evolutionary gap between fish and 
human, there is a manifest histological similarity between 
tumors formed in fish and those in human, with many im-
portant genes and pathways involved in cancer being 
maintained in both species (Table 1).27 One such example 
is that of the p53 tumor-suppressor protein. This transcrip-
tion factor is essential in regulating cell death, proliferation, 
and maintenance of genomic stability, and its mutation has 
been associated with more than 50% of all human tumors.28 
In 2005, a forwards genetic study generated and identified 
three p53 missense mutations in zebrafish, of which two had 
been previously reported in human tumors.29 These mutant 
fish developed tumors at an early age. Despite differences 
in p53 transcription regulation,30 the zebrafish model for this 
pathway showed conservation of its main functions, like the 
role of p53 in DNA damage–induced apoptosis. Additionally, 
the development of antibodies for zebrafish p53 protein has 
contributed for the value of this model in the study of p53 in 
the context of cancer.27,30 
 Recently, zebrafish has become an interesting model 

for the study of melanoma progression. It has been well es-
tablished that mutations that activate the RAS/RAF/MEK/
ERK signaling cascade, notably mutations in the BRAF and 
NRAS genes, are very common in this type of tumor.32 To 
further determine the role of these genes in the progression 
of the disease, several transgenic fish lines were generated. 
While the BRAF mutant fish developed large agglomerates 
of proliferating melanocytes, which histologically resembled 
human nevi, the NRAS mutant fish displayed severe defects 
in pigment patterning but did not quickly developed mela-
noma. Interestingly, when both transgenic fish lines were 
crossed with p53 mutant lines, the melanoma phenotype 
progressed significantly faster, highlighting the importance 
of p53 function in melanoma tumor suppression.33,34 A third 
transgenic fish line was developed, expressing the oncogen-
ic human HRAS gene in the melanocytic cell line. Research 
performed with these fishes suggested a role for epigenetic 
regulation in this melanoma model.35 Overall, these results 
show that zebrafish melanomas resemble human disease 
morphologically, genetically and epigenetically, demonstrat-
ing zebrafish suitability as a melanoma model.27

 Another type of cancer that found in zebrafish an ad-
equate model was the acute lymphoblastic leukemia (ALL), 
a disease with relatively homogeneous morphology and im-
munophenotype, but with great heterogeneity at the genetic 
level, which can lead to distinct responses to therapy.27 One 
of the main causes of ALL is the TEL-AML1 fusion, associ-
ated with B-lymphocytes. Transgenic fish were generated 
with this mutation in all cell lineages, and developed lympho-
blastic leukemia, which phenocopied the childhood CD10+ 
pre-B ALL.36 T-cell ALL modeling in zebrafish was achieved 
by creating a transgenic line for the oncogene Myc.37 Other 
mechanisms responsible for ALL have also been addressed 
with zebrafish, such as Notch1-induced T-ALL.38 
 The oncogene Kras in pancreatic cancer and in rhab-
domyosarcomas was also studied with zebrafish. Several 
transgenic lines for pancreatic cancer have been created, 
allowing findings on cancer initiation and progression, as 
well as on defining the cell of origin for invasive pancreatic 
ductal adenocarcinomas, acinar cell carcinomas and ade-
nocarcinomas with mixed acinar and ductal features. This 
same Kras transgenic line also developed very aggressive 
muscle tumors that resembled the human embryonic rhab-
domyosarcoma, and was used for gene-expression analysis 
of both Kras-dependent types of cancer.27 Other gene-based 
models have been created by target-selected mutagenesis 
strategies. These include the tumor-suppressor genes ad-
enomatous polyposis coli (APC) and phosphatase and ten-
sin homolog on chromosome 10 (PTEN), and the MYCN-
driven pancreatic neuroendocrine carcinoma. Results from 
all these studies have enhanced our understanding of the 
biology behind cancer. Such studies have the potential to 
lead to advances in treatment of the pathology. These facts 
together with the power of forward and reverse genetic 
screens, and xenotransplantations of cancer cells (e.g. ZF-
CANCER – FP7 project), have further cemented zebrafish 
as a vertebrate model for cancer.27
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Table 1 - Zebrafish models of human diseases. 

Zebrafish Mutant Gene 
Affected Phenotype Human Disease References

tp53 N168K null 
mutation tp53 Malignant peripheral nerve sheath tumors; failure to 

activate apoptosis Cancer (29)

tp53 M214K  null 
mutation tp53 Malignant peripheral nerve sheath tumors; failure to 

activate apoptosis Cancer (29)

BRAF mutant braf Large lesions of proliferating melanocytes, which 
histologically resembled human nevi Melanoma (33)

NRAS mutant nras Severe defects in pigment patterning Melanoma (34)
HRAS mutant hras Melanoma Melanoma (35)

Transgenic 
expression

tel/aml1 
fusion Acute lymphoblastic leukemia

Childhood CD10+ precursor 
B-lymphocyte acute 
lymphoblastic leukemia

(36)

Transgenic 
expression c-myc Acute lymphoblastic leukemia T-cell acute lymphoblastic 

leukemia (37)

Transgenic 
expression kras Tumors in pancreas and muscle Pancreatic cancer and 

rhabdomyosarcomas (27)

apc null mutation apc Tumors in liver and intestine Colon cancer (27)
MO pten Ocular tumors Cancer (27)

Transgenic 
expression mycn β-islet cell neuroendocrine carcinoma MYCN-driven pancreatic 

neuroendocrine carcinoma (27)

heart-strings (hst) tbx5 Abnormalities in cardiac differentiation and fin 
development

Holt-Oram syndrome with 
cardiac septation defects and 
limb abnormalities

(52)

slipjig (sli) foxn4 Structural atrioventricular canal malformation 
accompanied by atrioventricular conduction defects

Atrioventricular canal defects in 
humans (52)

gridlock (grl) hey2 Impaired blood flow in the tail owing to arterial 
blockade in the anterior trunk, hyperplastic hearts Congenital aortic coarctation (52)

island beat (isl) C- LTCC Reduced number of ventricular cardiac myocytes 
and arrhythmia (52)

liebeskummer (lik) ruvbl2 Cardiac hyperplasia (52)
heart of glass (heg), 

santa (san) and 
valentine (val)

heg, krit1 
and ccm2

Formation of hypocontractile, monolayered, giant 
cardiac ventricles (52)

dead beat (ded) PLCG1 Loss of cardiac contractility between 48-60 hpf DMC (52)
main squeeze (msq) ILK Loss of cardiac contractility between 60-72 hpf DMC (52)

pickwick (pik),  titin Zebrafish do not form cardiac sarcomeres DMC (52)
tell tale heart (tel) mlc2 Zebrafish do not form cardiac sarcomeres HCM (52)

silent heart (sil) TNNT2 Ventricular acontractility owing to impaired 
myofibrillogenesis HCM (52)

erg kcnh2 (loss 
of function)

Complete atrioventricular block and ventricular 
asystole Long QT syndrome (52)

reggae (reg) kcnh2 (gain 
of function)

Accelerated repolarization and paroxysmal atrial 
fibrillation Short QT syndrome (52)

slow mo (smo) hcn Bradycardia Bradycardia (52)
tremblor (tre) NCX Atrial fibrillation Arrhythmia (52)

MO parkin 20% loss of DA neurons in the vDC with increased 
susceptibility to PD-inducing neurotoxins 

Autosomal-recessive early-
onset PD (55)

MO pink1
40% reduction in the number of DA neurons in the 
vDC, impaired response to touch stimuli, reduced 
swimming behavior, and mitochondrial defects

Autosomal-recessive early-
onset PD (55)

MO dj-1 DA neurons more sensitive to oxidative stress Autosomal-recessive early-
onset PD (55)

MO irrk2 Loss of DA neurons in the vDC and locomotor 
defects

Autosomal-dominant early-
onset PD (55)

Transient OE Mhtt (Q102-
htt)

Accumulation of Htt:GFP aggregates throughout 
the body of embryos at 24 hpf, with soluble forms of 
mHtt proving neurotoxic

HD (55)

MO appa, appb

Reduced body length and defective convergent-
extension movements during gastrulation. Defects 
are rescued by wild-type human APP mRNA, but not 
by the Swedish mutant APP 

Familial AD (55)

Transgenic 
expression

mutant 
human 
MAPT

tau hyperphosphorylation, tangle formation, 
neurodegeneration in the spinal cord, and behavioral 
deficits in escape response

AD (55)

MO – Morpholino oligonucleotide, OE – over expression, hpf – hours post fertilization. 
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2. Diabetes and Lipid-related Diseases
 Due to the amenability of zebrafish for developmental 
studies, there is an accurate description of pancreas de-
velopment and morphogenesis for this species. Studies 
performed in zebrafish have specifically led to the under-
standing of extrinsic signaling molecules, like retinoic acid, 
Shh and FGF, in influencing intrinsic transcriptional pro-
grams.39,40 These efforts have made zebrafish an alterna-
tive model to study not only the onset of diabetes but also 
its treatment. Zebrafish become hyperglycemic if exposed 
to high glucose and develop retinopathies with prolonged 
high blood sugar levels. Additionally, zebrafish also react 
satisfactorily to anti-diabetic drugs.41,42

 The suitability of the zebrafish as a model for lipid-re-
lated diseases lies with the fact that they possess remark-
able similarities with mammals in their lipid absorption, 
processing and metabolism, together with the possibility 
of applying imaging methods with subcellular resolution to 
a whole organism, thanks to the availability of fluorescent 
lipid dyes.43,44 Zebrafish has been shown to be an adequate 
atherosclerosis model, allowing for the analysis of the le-
sion development, by imaging lipid deposition and cellular 
changes in the vascular wall, and by visualization of mac-
rophage lipid deposition in vivo.45 Obesity has also been 
addressed with zebrafish, since their energy homeostasis 
resembles that of mammals, including a melanocortin sys-
tem that responds to leptin,46 and similar response to com-
pounds known to modulate the fat content in mammals.47 
Lastly, the metabolism of cholesterol in zebrafish shares 
many of its features with that of mammals. Both share key 
transcriptional regulators - SREBP (sterol-regulatory-ele-
ment-binding protein) and LXR (liver X receptor) systems, 
and mutant fish for genes involved show similar phenotypes 
to the equivalent human pathologies.48,49

3. Cardiovascular Diseases
 In recent years, the development of the cardiovascular 
system in zebrafish has been thoroughly studied and char-
acterized, greatly accelerating our knowledge of cardiac 
development, angiogenesis and vasculogenesis. The ame-
nability of this model for cardiovascular studies lies with its 
external embryological development, its optical clarity as an 
embryo, closed cardiovascular system and similar cardiac 
cycle. All these features allow the sequential observation 
of the developing heart and blood vessels without inva-
sive techniques in both wild type and mutant embryos.50–52 
Since zebrafish regenerate their hearts, researchers have 
investigated the origins of defects in heart size, shape, and 
function, and most importantly have looked for the cellular 
sources or stem cells involved in the regeneration of the 
cardiac muscle.52–54 Several human cardiovascular diseas-
es have also been addressed with zebrafish disease mod-
els, like the Holt-Oram syndrome, congenital defects in the 
atrioventricular canal and aortic coarctation, dilated cardio-
myopathy (DCM) and hypertrophic cardiomyopathy (HCM), 
long and short QT syndromes, and other arrhythmias (Table 
1).52

4. Neurodegeneration
 Zebrafish brain shows many organizational similarities 
and homologies with the human brain, specifically the pres-
ence of a fore, mid and hindbrain, including a diencephalon, 
telencephalon and cerebellum. Zebrafish also display com-
plex behaviors such as memory, conditioned responses, 
and schooling.55

 Many neurodegenerative diseases have been tackled 
with this model. Several homologues of Parkinson’s dis-
ease (PD) associated genes have been found in zebrafish, 
including parkin, pink1, dj-1, and lrrk2, that have shown 
conserved functions in the development and survival of 
dopaminergic (DA) neurons (Table 1). Furthermore, stud-
ies in the sporadic form of PD have also been performed 
in zebrafish, by means of the neurotoxin MPTP (1-methyl-
4-phenyl-1,2,3,6-tetrapyridine). This drug induced a tran-
sient decrease in dopamine levels, behavioral defects, and 
a significant reduction of DA neurons in the vDC (ventral 
diencephalon).55 
 Huntington’s disease (HD) has been studied in zebraf-
ish with antisense Morpholino (MO) technology. These have 
indicated a role in cellular iron utilization for Htt, with blood 
hypochromia, and loss of sensory neurons and telencephal-
ic tissue as the main phenotypes. Overexpression studies 
of mutant Htt proteins (Q102 mHtt) in zebrafish have also 
allowed for the photocopying of HD symptoms and drug 
screen studies (Table 1).55

 Zebrafish has shown to be a good model for research 
in Alzheimer’s disease (AD), allowing insights into the roles 
of the APP and MAPT (Tau) proteins in this disease (Table 
1).55 

5. Ciliopathies
 Cilia or flagella are ubiquitous organelles with a highly 
conserved structure, which can be found in a large variety 
of organisms from single cell eukaryotes to the majority of 
mammalian cell types. Cilia and flagella are constituted by 
an axoneme made by a microtubule (MT) cytoskeleton en-
veloped in a ciliary membrane. Cilia can be divided in two 
main types, motile and immotile, both having an axoneme 
constituted by nine MT doublets. Whereas immotile cilia, 
also known as primary cilia, have no further structures, mo-
tile cilia are equipped with extra structures, namely outer 
and inner dynein arms (ODAs and IDAs, respectively) that 
generate the necessary force for motility. Additionally, most 
motile cilia also possess a central apparatus made of two 
MTs, several radial spokes and central pair projections that 
regulate and propagate the motor activity through the cilium 
(Figure 1 – E).56,57

 Motile cilia are involved in cell motility, as is the case 
of several ciliated eukaryotes like Trypanosoma brucei or 
Paramecium (with one flagellum and hundreds of small 
cilia, respectively). In multicellular organisms, motile cilia 
are involved in propelling sperm and in moving extracellu-
lar fluids, such as mucus in respiratory airways56,58 or the 
cerebrospinal fluid.56,59 A special type of motile cilia, with a 
9+0 axoneme, present in the embryonic node was shown to 
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generate a leftward fluid flow (nodal flow) that is involved in 
left−right body axis determination.56,58,60

 Up until the late 1990’s, the primary cilia were described 
as an evolutionary ‘remnant’ with no relevant function. 
Nevertheless almost all mammalian cell types assemble 
a primary cilium after exiting the cell cycle.57 Only in 2000 
was the primary cilium associated with a common human 
disease, when Pazour et al. showed that Chlamydomonas 
IFT88 mutants had no flagella and that the mice mutated for 
the IFT88 orthologue, Polaris, suffered from polycystic kid-
ney disease (PKD).57,61 Since then, several diseases have 
been associated with primary or motile cilia misassembly or 
malfunction and have collectively been designated as cil-
iopathies (Table 2).56,57 
 Ciliopathies are characterized by a large diversity of 
usually overlapping symptoms (Table 2), with mutations in 
different genes causing the same disease, and mutations 
in the same gene causing different pathologies.62 Several 
explanations have been suggested for this phenomenon, 
such as the effect of mutations on protein function, the pat-
tern of expression of the mutated gene, and the mutational 

load across different ciliary genes.63 These characteristics 
make the study of ciliopathies more complex. In addition to 
some ciliated cell lines available for primary cilia, several 
model organisms have been used during the last decade 
in the study of ciliopathies. Perhaps one of the best animal 
models for these diseases is the zebrafish for combining the 
presence of all types of cilia and for being a vertebrate.
 Zebrafish embryos contain several ciliated organs, with 
both motile and primary cilia. Zebrafish has become an im-
portant model system in the study of renal diseases, such 
as PKD and acute kidney injury (AKI), and in the search 
of new therapeutics due to the structural and functional 
simplicity of its embryonic kidney.56,64 In our group, we take 
advantage of zebrafish embryonic transparency and use 
a ciliated organ – Kupffer’s Vesicle – to study cilia length 
regulation and ciliary motility. How does beat frequency and 
length modulate fluid flow is one of our main questions, with 
the ultimate objective of understanding fluid and ciliary dy-
namics in respiratory diseases, polycystic kidney disease 
and situs inversus. 

Table 2 -  Ciliopathies, major clinical features and genes involved. 

Ciliopathy Major clinical features Genes involved

BBS

Retinitis pigmentosa, Renal cystic 
disease, Polydactyly, Situs inversus/
Isomerism, Mental retardation, Hypoplasia 
of corpus callosum, Dandy-Walker 
malformation, Hepatic disease

BBS1, BBS2, BBS4, BBS5, BBS7, BBS9/PTHB1, BBS10/C12ORF58/FLJ23560, 
TRIM32/BBS11, BBS12, MKKS/BBS6, ARL6/BBS3/RP55, TTC8/BBS8/RP51, 
WDPCP/C2ORF86/BBS15/FRITZ, MKS1/BBS13, CEP290/NPHP6/BBS14/JBTS5, 
TMEM67/MKS3/JBTS6/NPHP11, KIF7/JBTS12

MKS

Retinitis pigmentosa, Renal cystic 
disease, Polydactyly, Situs inversus/
Isomerism, Mental retardation, Hypoplasia 
of corpus callosum, Dandy-Walker 
malformation, Hepatic disease, Posterior 
encephalocele

WDPCP/C2ORF86/BBS15/FRITZ, MKS1/BBS13, CEP290/NPHP6/BBS14/JBTS5, 
TMEM67/MKS3/JBTS6/NPHP11, RPGRIP1L/JBTS7/NPHP8/MKS5, CC2D2A/JBTS9/
MKS6, TMEM216/MKS2/JBTS2, NPHP3/MKS7, TCTN2/MKS8, B9D1/MKS9, B9D2/
MKS10

JBTS

Retinitis pigmentosa, Renal cystic 
disease, Polydactyly, Situs inversus/
Isomerism, Mental retardation, Hypoplasia 
of corpus callosum, Dandy-Walker 
malformation, Posterior encephalocele, 
Hepatic disease

CEP290/NPHP6/BBS14/JBTS5, TMEM67/MKS3/JBTS6/NPHP11, RPGRIP1L/JBTS7/
NPHP8/MKS5, CC2D2A/JBTS9/MKS6, TMEM216/MKS2/JBTS2, NPHP1/JBTS4/
SLSN1, TTC21B/JBTS11/NPHP12/ATD4, ARL13B/JBTS8 (ARL2L1), INPP5E/JBTS1, 
AHI1/Jouberin/JBTS3, KIF7/JBTS12, TCTN1/JBTS13, OFD1/CXORF5/JBTS10

NPHP

Polyuria, Polydipsia, Proteinuria 
End-stage kidney disease, Retinitis 
pigmentosa, Hepatic disease, Mental 
retardation, 

CEP290/NPHP6/BBS14/JBTS5, TMEM67/MKS3/JBTS6/NPHP11, RPGRIP1L/JBTS7/
NPHP8/MKS5, NPHP3/MKS7, NPHP1/JBTS4/SLSN1, TTC21B/JBTS11/NPHP12/
ATD4, SDCCAG8/SLSN7/NPHP10, NPHP4/SLSN4, GLIS2/NPHP7, WDR19/NPHP13/
ATD5, NEK8/NPHP9, INVS/NPHP2

SLSN
Retinitis pigmentosa, Renal cystic 
disease, Situs inversus/Isomerism, Dandy-
Walker malformation, Hepatic disease

CEP290/NPHP6/BBS14/JBTS5, NPHP1/JBTS4/SLSN1, SDCCAG8/SLSN7/NPHP10, 
NPHP4/SLSN4, IQCB1/NPHP5/SLSN5

LCA/RP Severe vision loss or blindness
ARL6/BBS3/RP55, TTC8/BBS8/RP51, CEP290/NPHP6/BBS14/JBTS5, RPGRIP1L/
JBTS7/NPHP8/MKS5, IQCB1/NPHP5/SLSN5, RPGR/RP3, LCA5/lebercilin, RP1, RP2, 
RPGRIP1, MAK

MKKS

Congenital hydrometrocolpos, Respiratory 
embarrassment, Urinary, intestinal, 
circulatory obstruction, Congenital heart 
defect, Polydactyly

MKKS/BBS6

JATD Skeletal dysplasia, Polydactyly, Renal, 
liver, pancreas and retinal abnormalities

TTC21B/JBTS11/NPHP12/ATD4, WDR19/NPHP13/ATD5, ATD1, IFT80/ATD2, 
DYNC2H1/ATD3

ALMS Dilated cardiomyopathy, Cone-rod 
dystrophy, Developmental delays, Obesity ALMS1

PKD Polycystic kidneys PC1/PKD1, PC2/PKD2
ALMS - Alstrom syndrome; BBS - Bardet–Biedl syndrome; JATD - Jeune asphyxiating thoracic dystrophy; JBTS - Joubert syndrome; LCA/RP - Leber congenital amaurosis/retinitis 
pigmentosa; MKKS - McKusick-Kaufman syndrome; MKS - Meckel–Gruber syndrome; NPHP - nephronophthisis; PKD - polycystic kidney disease; SLSN - Senior–Loken syndrome. 
Information from Online Mendelian Inheritance in Man (http://www.ncbi.nlm.nih.gov/omim).
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Table 3 - Main Portuguese fundamental and biomedical research groups working with zebrafish model. 

Group Principal 
Investigator Main Interests Affiliation Location

EDGE Molecular 
Biology Leonor Cancela Skeletogenesis and vertebrate skeletal 

development CCMAR, UALG Algarve

Tissue Morphogenesis 
and Repair António Jacinto Wound healing and tissue regeneration CEDOC, FCM/UNL Lisbon

Cilia Regulation 
and Disease Susana Lopes Ciliogenesis, cilia length and motility regulation CEDOC, FCM/UNL Lisbon

Stress 
Biology Manuel Santos Biology of small RNAs, the genetic code, 

and the origin of life CESAM, UA Aveiro

Intelligent 
Systems Adam Kampff

Structural modulation of the world by the 
nervous system, learning, coding 
information in a nervous network and behavior

CCU, CF Lisbon

Vision 
to Action Michael Orger Integration of visual information and behavior CCU, CF Lisbon

Fish Nutrition 
and Immunobiology

António Paulo 
Carvalho

Effect of toxins at the molecular and 
organism levels CIIMAR, FCUP Porto

Redox Biology Susana Marinho Role of H2O2 in tumor progression CQB, FCUL Lisbon

Pharmacology Lab Glória Queiroz Drug testing targeted to mitochondrial 
disorders in neurodegenerative diseases DCM, FFUP Porto

Vertebrate development 
and regeneration José Bessa Pancreas development and function IBMC, UP Porto

Ecotox Lúcia Guilhermino Ecological and human health risk 
assessment ICBAS/CIIMAR, FCUP Porto

Telomeres and Genome 
Stability

Miguel Godinho 
Ferreira The role of telomeres in aging and cancer IGC, FCG Lisbon

Integrative Behavioral 
Biology Rui Oliveira Comparative social cognition

Social modulation of adult neurogenesis IGC, FCG Lisbon

Embryonic Development 
of Vertebrates Unit Leonor Saúde Left-Right Asymmetry, Somite Formation, 

and Organ / Tissue Regeneration IMM, FMUL Lisbon

Microvascular Biology 
and Inflammation Unit Carlota Saldanha Inflammation, Leukocyte-endothelium interaction/

Microcirculation IMM, FMUL Lisbon

Cell and Molecular 
Neuroscience Unit

Tiago Fleming 
Outeiro

Development of novel therapeutic approaches 
for neurodegenerative diseases IMM, FMUL Lisbon

Angiogenesis Unit Susana Constantino
Ionizing radiation enhances angiogenesis. 
Role of ionizing radiation in metastasis and spinal 
cord repair

IMM, FMUL Lisbon

TECHNOZeb Nuno Afonso Drug screening with impact in bone formation Technophage, IMM Lisbon

Laboratory Animal Anesthesia Luis Antunes Refinement of anesthesia UTAD Vila Real

Ecointegrity Ana Coimbra
Endocrine disruptors effect in sexual 
differentiation and signaling, using ovarian 
apoptosis as a readout

UTAD Vila Real

CCMAR – Centro de Ciências do Mar; UALG – Universidade do Algarve; CEDOC – Centro de Estudos de Doenças Crónicas; FCM/UNL – Faculdade de Ciências Médicas da Univer-
sidade de Lisboa; CESAM – Centro de Estudos do Ambiente e do Mar; UA – Universidade de Aveiro; CCU – Champalimaud Center for the Unknown; CF – Champalimaud Foundation; 
CIIMAR – Centro Interdisciplinar de Investigação Marinha e do Ambiente; FCUP – Faculdade de Ciências da Universidade do Porto; CQB – Centro de Química e de Bioquímica; 
FCUL – Faculdade de Ciências da Universidade de Lisboa; IBMC – Instituto de Biologia Molecular e Celular; UP – Universidade de Porto; ICBAS – Instituto de Ciências Biomédicas de 
Abel Salazar; DMC – Departamento de Ciências do Medicamento; FFUP – Faculdade de Farmácia da Universidade do Porto; IGC – Instituto Gulbenkian de Ciência; FCG – Fundação 
Calouste Gulbenkian; IMM – Instituto de Medicina Molecular; FMUL – Faculdade de Medicina da Universidade de Lisboa; UTAD – Universidade de Trás-os-Montes e Alto Douro. 

Zebrafish and Drug Screening
 Over all zebrafish’s characteristics make them ideal for 
fast, reliable and low-cost drug screenings during pre-reg-
ulatory phases of drug development or repositioning and 
they can now be used in high-throughput screening (HTS) 
of drug libraries.65–67 This screening procedure involves ob-
taining zebrafish embryos or larvae, at the same develop-
ment stage, loading them into multiwell plates, dosing the 
plates with chemical compounds, and then checking for 
changes elicited by the drugs at different concentrations, 
with the aim of improving the zebrafish phenotype that mim-
ics a specific human disease.65,67,68 True HTS use robotics 
and automated fluid handling systems. These technologies 
have been adapted in the vertebrate automated screening 
technology (VAST), which loads live larvae from a reservoir 

and positions it into a capillary-based imaging chamber that 
can be rotated for an optimal field-of-view. After imaging, 
further manipulations can be performed, and then the lar-
vae are automatically returned to their original container.67,68 
This basic model of HTS, with or without the automatiza-
tion provided by robotics, has allowed for many types of 
studies, such as new or repositioning drug screens for a 
variety of diseases like cardiovascular, polycystic kidneys, 
cancer69,70 and obesity; screening for regeneration, psycho-
tropic, antimicrobial and immunosuppressant drugs; sen-
sory organ and behavioral screens; screening of bioactive 
natural products; and toxicology studies.67,68,71–74 Recently, 
Leonard Zon’s team has identified two new drugs that are 
now in early clinical trials in cancer patients. They have also 
discovered a new use for FT1050, a chemical variant of 



590Revista Científica da Ordem dos Médicos          www.actamedicaportuguesa.com                                                                                                                

A
R

TIG
O

 D
E R

EVISÃ
O

Tavares B, et al. The importance of zebrafish in biomedical research, Acta Med Port 2013 Sep-Oct;26(5):583-592

prostaglandin E2 (PGE2) usually used to treat stomach ul-
cers. This drug was found to boost the production of blood 
stem cells and has just successfully concluded Phase 1 of 
Clinical trials.75

Biomedical Research with Zebrafish model in Portugal
 Several Portuguese groups currently use zebrafish as 
a model for fundamental and biomedical research. Some 
of these groups and their research focus are summarized 
in Table 3. The variety in the fields of research is a good 
indication of the amenity and eclectic usefulness of the 
zebrafish as a biologic model. For example, zebrafish ex-
ceptional ability to regenerate has allowed researchers like 
Cancela, Jacinto, Saúde and Constantino (Table 3) to study 
skeletal biomineralization, wound healing, tissue and organ 
regeneration, and the role of ionizing radiation in spinal cord 
repair, respectively. The zebrafish embryo/larval transpar-
ency has been useful in studies of development of neuro-
logical networks, necessary for understanding learning and 
memory (Kampff and Orger, Table 3). In addition, zebrafish 
is by far the most versatile vertebrate model organism for 
studying cilia biology in vivo. Lopes’ group is interested in 
cilia length and motility regulation to understand ciliopa-
thies, whereas Saúde’s group is exploiting the role of cilia in 
tissue regeneration (Table 3).
 Cancer is currently being investigated with zebrafish in 
several Portuguese labs (Marinho, Godinho Ferreira and 
Constantino, Table 3), namely the role of H2O2 as a signaling 
molecule in tumor microenvironment and progression, the 
role of telomeres in cancer, or the mechanisms of tumoral 
angiogenesis and metastization under ionizing radiation. 
Behavior and neurogenesis are being studied by Oliveira’s 
group using as a readout zebrafish’s natural behavioral pat-
terns (Table 3). Important work is also being done in the role 
of small RNAs related with environmental stress, genome 
translation fidelity, proteotoxic stress and human diseases 
(Santos, Table 3). Saldanha’s group is interested in under-
standing the mechanisms that govern leukocyte recruitment 

and cell-cell interaction in inflammation and the role of spe-
cific inflammatory mediators, such as H2O2 and Cxcl-8 in 
this process (Table 3). 
 Research on neurodegenerative disorders is also being 
undertaken. Outeiro’s group focus in developing novel ze-
brafish models for Parkinson’s or Alzheimer’s, and intends 
to test novel drugs for therapeutic value. In the meanwhile 
Queiroz’s group uses zebrafish to test drugs to target mito-
chondria-associated disorders (Table 3).
 Bessa’s group uses zebrafish to research the impact 
that non-coding mutations have in pancreas development 
and in recapitulating human disorders. Antunes’ group use 
zebrafish in order to refine anesthesia and Coimbra’s team 
studies the role of endocrine disruptors in sexual differentia-
tion (Table 3).
 Furthermore, environmental pollution and the effects 
of chemicals and radiation at the molecular and organism 
levels are being studied by Carvalho’s group, while the im-
pact of these stressors in human health is being addressed 
through toxicology assays by Guilhermino’s group (Table 3).
Lastly, the biotech company Technophage has also taken 
advantage of zebrafish model with the unit TECHNOZeb, 
which uses larvae and zebrafish adults to screen drug li-
braries and identify molecules with application in bone dis-
orders like osteoporosis and cancer (Afonso’s group, Table 
3).
 Taken together, these studies prove zebrafish as a suc-
cessful model system for studying a comprehensive spec-
trum of diseases that affect millions of humans, and point 
to a very auspicious future of inexpensive and rapid drug 
discovery based on the zebrafish model.
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