The Impact of CFTR Modulating Therapy on Chronic Lung Infection in Patients with Cystic Fibrosis
DOI:
https://doi.org/10.20344/amp.20106Keywords:
Cystic Fibrosis Transmembrane Conductance Regulator/therapeutic, Cystic Fibrosis/drug therapy, Respiratory Tract Infections/drug therapyAbstract
Cystic fibrosis is the most common lethal genetic disease in the white population, affecting approximately 80 000 people worldwide. It is an autosomal recessive, monogenic, and multisystemic disease, with over 2000 mutations described in the CFTR protein gene. The dysfunction of this protein leads to a decrease in the secretion of chlorine and bicarbonate, sodium hyperabsorption, and consequent water absorption, resulting in the thickening of secretions and accumulation of pathogens. These changes culminate in inflammation, chronic pulmonary infection, and recurrent exacerbations, with lung disease being the main cause of morbidity and mortality. In the early stages of the disease, Staphylococcus aureus is generally the agent responsible for chronic infection. Over time, Pseudomonas aeruginosa becomes more prevalent, being the most frequent bacteria in adults. However, in up to 70% of patients, colonization is polymicrobial, with frequent isolation of S. aureus and P. aeruginosa, associated with Haemophilus influenzae or Streptococcus pneumoniae, as well as isolation of other bacterial agents, viruses, or fungi. In recent years, drugs modulating CFTR have been developed which have shown a positive effect on lung function, body mass index, exacerbation rate, chlorine concentration, and quality of life. Currently, four drugs are approved that act by improving the function or increasing the amount of protein produced and consequently the ion transport. [...]
Downloads
References
Meoli A, Fainardi V, Deolmi M, Chiopris G, Marinelli F, Caminiti C, et al. State of the art on approved cystic fibrosis transmembrane conductance regulator (CFTR) modulators and triple-combination therapy. Pharmaceuticals. 2021;14:928. DOI: https://doi.org/10.3390/ph14090928
Bessonova L, Volkova N, Higgins M, Bengtsson L, Tian S, Simard C, et al. Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax. 2018;73:731-40. DOI: https://doi.org/10.1136/thoraxjnl-2017-210394
Bierlaagh MC, Muilwijk D, Beekman JM, van der Ent CK. A new era for people with cystic fibrosis. Eur J Pediatr. 2021;180:2731-9. DOI: https://doi.org/10.1007/s00431-021-04168-y
Harvey C, Weldon S, Elborn S, Downey DG, Taggart C. The effect of CFTR modulators on airway infection in cystic fibrosis. Int J Mol Sci. 2022;23:3513. DOI: https://doi.org/10.3390/ijms23073513
Lopes-Pacheco M. CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Front Pharmacol. 2019;10:1662. DOI: https://doi.org/10.3389/fphar.2019.01662
Shteinberg M, Haq IJ, Polineni D, Davies JC. Cystic fibrosis. Lancet. 2021;397:2195-211. DOI: https://doi.org/10.1016/S0140-6736(20)32542-3
Haq I, Almulhem M, Soars S, Poulton D, Brodlie M. Precision medicine based on CFTR genotype for people with cystic fibrosis. Pharmgenomics Pers Med. 2022;15:91-104. DOI: https://doi.org/10.2147/PGPM.S245603
King JA, Nichols AL, Bentley S, Carr SB, Davies JC. An update on CFTR modulators as new therapies for cystic fibrosis. Paediatr Drugs. 2022;24:321-33. DOI: https://doi.org/10.1007/s40272-022-00509-y
Brochiero E, Dagenais A, Privé A, Berthiaume Y, Grygorczyk R. Evidence of a functional CFTR Cl(-) channel in adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2004;287:L382-92. DOI: https://doi.org/10.1152/ajplung.00320.2002
Kirwan L, Fletcher G, Harrington M, Jeleniewska P, Zhou S, Casserly B, et al. Longitudinal trends in real-world outcomes after initiation of ivacaftor. A cohort study from the Cystic Fibrosis Registry of Ireland. Ann Am Thorac Soc. 2019;16:209-16. DOI: https://doi.org/10.1513/AnnalsATS.201802-149OC
Leigh MW, Kylander JE, Yankaskas JR, Boucher RC. Cell proliferation in bronchial epithelium and submucosal glands of cystic fibrosis patients. Am J Respir Cell Mol Biol. 1995;12:605-12. DOI: https://doi.org/10.1165/ajrcmb.12.6.7766425
Ballard ST, Trout L, Bebök Z, Sorscher EJ, Crews A. CFTR involvement in chloride, bicarbonate, and liquid secretion by airway submucosal glands. Am J Physiol. 1999;277:L694-9. DOI: https://doi.org/10.1152/ajplung.1999.277.4.L694
McShane D, Davies JC, Wodehouse T, Bush A, Geddes D, Alton EW. Normal nasal mucociliary clearance in CF children: evidence against a CFTRrelated defect. Eur Respir J. 2004;24:95-100. DOI: https://doi.org/10.1183/09031936.04.00097503
Muhlebach MS, Stewart PW, Leigh MW, Noah TL. Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med. 1999;160:186-91. DOI: https://doi.org/10.1164/ajrccm.160.1.9808096
Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995;151:1075-82. DOI: https://doi.org/10.1164/ajrccm.151.4.7697234
Wagener JS, Kahn TZ, Copenhaver SC, Accurso FJ. Early inflammation and the development of pulmonary disease in cystic fibrosis. Pediatr Pulmonol Suppl. 1997;16:267-8. DOI: https://doi.org/10.1002/ppul.19502308138
Dean TP, Dai Y, Shute JK, Church MK, Warner JO. Interleukin-8 concentrations are elevated in bronchoalveolar lavage, sputum, and sera of children with cystic fibrosis. Pediatr Res. 1993;34:159-61. DOI: https://doi.org/10.1203/00006450-199308000-00010
Tabary O, Zahm JM, Hinnrasky J, Couetil JP, Cornillet P, Guenounou M, et al. Selective up-regulation of chemokine IL-8 expression in cystic fibrosis bronchial gland cells in vivo and in vitro. Am J Pathol. 1998;153:921-30. DOI: https://doi.org/10.1016/S0002-9440(10)65633-7
Bonfield TL, Konstan MW, Burfeind P, Panuska JR, Hilliard JB, Berger M. Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am J Respir Cell Mol Biol. 1995;13:257-61. DOI: https://doi.org/10.1165/ajrcmb.13.3.7544594
Wooldridge JL, Deutsch GH, Sontag MK, Osberg I, Chase DR, Silkoff PE, et al. NO pathway in CF and non-CF children. Pediatr Pulmonol. 2004;37:338-50. DOI: https://doi.org/10.1002/ppul.10455
Konstan MW, Hilliard KA, Norvell TM, Berger M. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med. 1994;150:448-54. DOI: https://doi.org/10.1164/ajrccm.150.2.8049828
Birrer P, McElvaney NG, Rüdeberg A, Sommer CW, Liechti-Gallati S, Kraemer R, et al. Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med. 1994;150:207-13. DOI: https://doi.org/10.1164/ajrccm.150.1.7912987
DiMango E, Zar HJ, Bryan R, Prince A. Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Invest. 1995;96:2204-10. DOI: https://doi.org/10.1172/JCI118275
Roum JH, Buhl R, McElvaney NG, Borok Z, Crystal RG. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol. 1993;75:2419-24. DOI: https://doi.org/10.1152/jappl.1993.75.6.2419
Koller DY, Urbanek R, Götz M. Increased degranulation of eosinophil and neutrophil granulocytes in cystic fibrosis. Am J Respir Crit Care Med. 1995;152:629-33. DOI: https://doi.org/10.1164/ajrccm.152.2.7633718
Bell SC, Mall MA, Gutierrez H, Macek M, Madge S, Davies JC, et al. The future of cystic fibrosis care: a global perspective. Lancet Respir Med. 2020;8:65-124. DOI: https://doi.org/10.1016/S2213-2600(19)30337-6
Harrison F. Microbial ecology of the cystic fibrosis lung. Microbiology. 2007;153:917-23. DOI: https://doi.org/10.1099/mic.0.2006/004077-0
del Campo R, Morosini MI, de la Pedrosa EG, Fenoll A, Muñoz-Almagro C, Máiz L, et al. Population structure, antimicrobial resistance, and mutation frequencies of Streptococcus pneumoniae isolates from cystic fibrosis patients. J Clin Microbiol. 2005;43:2207-14. DOI: https://doi.org/10.1128/JCM.43.5.2207-2214.2005
Román F, Cantón R, Pérez-Vázquez M, Baquero F, Campos J. Dynamics of long-term colonization of respiratory tract by Haemophilus influenzae in cystic fibrosis patients shows a marked increase in hypermutable strains. J Clin Microbiol. 2004;42:1450-9. DOI: https://doi.org/10.1128/JCM.42.4.1450-1459.2004
Silva Filho LV, Ferreira F de A, Reis FJ, Britto MC, Levy CE, Clark O, et al. Pseudomonas aeruginosa infection in patients with cystic fibrosis: scientific evidence regarding clinical impact, diagnosis, and treatment. J Bras Pneumol. 2013;39:495-512. DOI: https://doi.org/10.1590/S1806-37132013000400015
Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A. 2006;103:8487-92. DOI: https://doi.org/10.1073/pnas.0602138103
Govan JR, Brown AR, Jones AM. Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol. 2007;2:153-64. DOI: https://doi.org/10.2217/17460913.2.2.153
Blanchard AC, Waters VJ. Microbiology of cystic fibrosis airway disease. Semin Respir Crit Care Med. 2019;40:727-36. DOI: https://doi.org/10.1055/s-0039-1698464
Oliver A, Alarcón T, Caballero E, Cantón R. Diagnóstico microbiológico de la colonización-infección broncopulmonar en el paciente con fibrosis quística. Enferm Infecc Microbiol Clin. 2009;27:89-104. DOI: https://doi.org/10.1016/j.eimc.2008.05.004
Bardin E, Pastor A, Semeraro M, Golec A, Hayes K, Chevalier B, et al. Modulators of CFTR. Updates on clinical development and future directions. Eur J Med Chem. 2021;213:113195. DOI: https://doi.org/10.1016/j.ejmech.2021.113195
Tewkesbury DH, Robey RC, Barry PJ. Progress in precision medicine in cystic fibrosis: a focus on CFTR modulator therapy. Breathe. 2021;17:210112. DOI: https://doi.org/10.1183/20734735.0112-2021
Rowe SM, Daines C, Ringshausen FC, Kerem E, Wilson J, Tullis E, et al. Tezacaftor-ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med. 2017;377:2024-35. DOI: https://doi.org/10.1056/NEJMoa1709847
Middleton PG, Mall MA, Dřevínek P, Lands LC, McKone EF, Polineni D, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single phe508del allele. N Engl J Med. 2019;381:1809-19. DOI: https://doi.org/10.1056/NEJMoa1908639
Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365:1663-72. DOI: https://doi.org/10.1056/NEJMoa1105185
Flume PA, Liou TG, Borowitz DS, Li H, Yen K, Ordoñez CL, et al. Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest. 2012;142:718-24. DOI: https://doi.org/10.1378/chest.11-2672
Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, et al. Lumacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373:220-31. DOI: https://doi.org/10.1056/NEJMoa1409547
Taylor-Cousar JL, Munck A, McKone EF, van der Ent CK, Moeller A, Simard C, et al. Tezacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med. 2017;377:2013-23. DOI: https://doi.org/10.1056/NEJMoa1709846
Walker S, Flume P, McNamara J, Solomon M, Chilvers M, Chmiel J, et al. A phase 3 study of tezacaftor in combination with ivacaftor in children aged 6 through 11 years with cystic fibrosis. J Cyst Fibros. 2019;18:708-13. DOI: https://doi.org/10.1016/j.jcf.2019.06.009
Heijerman HG, McKone EF, Downey DG, Van Braeckel E, Rowe SM, Tullis E, et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet. 2019;394:1940-8. DOI: https://doi.org/10.1016/S0140-6736(19)32597-8
Mall MA, Brugha R, Gartner S, Legg J, Moeller A, Mondejar-Lopez P, et al. Efficacy and safety of elexacaftor/tezacaftor/ivacaftor in children 6 through 11 years of age with cystic fibrosis heterozygous for f508del and a minimal function mutation: a phase 3b, randomized, placebo-controlled study. Am J Respir Crit Care Med. 2022;206:1361-9. DOI: https://doi.org/10.1164/rccm.202202-0392OC
Reznikov LR, Abou Alaiwa MH, Dohrn CL, Gansemer ND, Diekema DJ, Stoltz DA, et al. Antibacterial properties of the CFTR potentiator ivacaftor. J Cyst Fibros. 2014;13:515-9. DOI: https://doi.org/10.1016/j.jcf.2014.02.004
Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev. 2011;35:247-74. DOI: https://doi.org/10.1111/j.1574-6976.2010.00247.x
Hisert KB, Heltshe SL, Pope C, Jorth P, Wu X, Edwards RM, et al. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am J Respir Crit Care Med. 2017;195:1617-28. DOI: https://doi.org/10.1164/rccm.201609-1954OC
Durfey SL, Pipavath S, Li A, Vo AT, Ratjen A, Carter S, et al. Combining ivacaftor and intensive antibiotics achieves limited clearance of cystic fibrosis infections. mBio. 2021;12:e0314821. DOI: https://doi.org/10.1128/mbio.03148-21
Rowe SM, Heltshe SL, Gonska T, Donaldson SH, Borowitz D, Gelfond D, et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med. 2014;190:175-84. DOI: https://doi.org/10.1164/rccm.201404-0703OC
Volkova N, Moy K, Evans J, Campbell D, Tian S, Simard C, et al. Disease progression in patients with cystic fibrosis treated with ivacaftor: data from national US and UK registries. J Cyst Fibros. 2020;19:68-79. DOI: https://doi.org/10.1016/j.jcf.2019.05.015
Frost FJ, Nazareth DS, Charman SC, Winstanley C, Walshaw MJ. Ivacaftor is associated with reduced lung infection by key cystic fibrosis pathogens. a cohort study using national registry data. Ann Am Thorac Soc. 2019;16:1375-82. DOI: https://doi.org/10.1513/AnnalsATS.201902-122OC
Neerincx AH, Whiteson K, Phan JL, Brinkman P, Abdel-Aziz MI, Weersink EJ, et al. Lumacaftor/ivacaftor changes the lung microbiome and metabolome in cystic fibrosis patients. ERJ Open Res. 2021;7:731-2020. DOI: https://doi.org/10.1183/23120541.00731-2020
Elborn JS, Ahuja S, Springman E, Mershon J, Grosswald R, Rowe SM. EMPIRE-CF: a phase II randomized placebo-controlled trial of once-daily, oral acebilustat in adult patients with cystic fibrosis - study design and patient demographics. Contemp Clin Trials. 2018;72:86-94. DOI: https://doi.org/10.1016/j.cct.2018.07.014
Sosinski LM, H CM, Neugebauer KA, Ghuneim LJ, Guzior DV, Castillo-Bahena A, et al. A restructuring of microbiome niche space is associated with elexacaftor-tezacaftor-ivacaftor therapy in the cystic fibrosis lung. J Cyst Fibros. 2022;21:996-1005. DOI: https://doi.org/10.1016/j.jcf.2021.11.003
Loughlin DW, Coughlan S, De Gascun CF, McNally P, Cox DW. The role of rhinovirus infections in young children with cystic fibrosis. J Clin Virol. 2020;129:104478. DOI: https://doi.org/10.1016/j.jcv.2020.104478
van Ewijk BE, van der Zalm MM, Wolfs TF, Fleer A, Kimpen JL, Wilbrink B, et al. Prevalence and impact of respiratory viral infections in young children with cystic fibrosis: prospective cohort study. Pediatrics. 2008;122:1171-6. DOI: https://doi.org/10.1542/peds.2007-3139
De Jong E, Garratt LW, Looi K, Lee AH, Ling KM, Smith ML, et al. Ivacaftor or lumacaftor/ivacaftor treatment does not alter the core cf airway epithelial gene response to rhinovirus. J Cyst Fibros. 2021;20:97-105. DOI: https://doi.org/10.1016/j.jcf.2020.07.004
Mayer-Hamblett N, Ramsey BW, Kulasekara HD, Wolter DJ, Houston LS, Pope CE, et al. Pseudomonas aeruginosa phenotypes associated with eradication failure in children with cystic fibrosis. Clin Infect Dis. 2014;59:624-31. DOI: https://doi.org/10.1093/cid/ciu385
Yi B, Dalpke AH, Boutin S. Changes in the cystic fibrosis airway microbiome in response to cftr modulator therapy. Front Cell Infect Microbiol. 2021;11:548613. DOI: https://doi.org/10.3389/fcimb.2021.548613
Jarosz-Griffiths HH, Scambler T, Wong CH, Lara-Reyna S, Holbrook J, Martinon F, et al. Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis. Elife. 2020;9:e54556. DOI: https://doi.org/10.7554/eLife.54556
Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4:223-9. DOI: https://doi.org/10.4161/viru.23724
Cho DY, Lim DJ, Mackey C, Skinner D, Zhang S, McCormick J, et al. Ivacaftor, a cystic fibrosis transmembrane conductance regulator potentiator, enhances ciprofloxacin activity against pseudomonas aeruginosa. Am J Rhinol Allergy. 2019;33:129-36. DOI: https://doi.org/10.1177/1945892418815615
Schneider EK, Reyes-Ortega F, Wilson JW, Kotsimbos T, Keating D, Li J, et al. Development of HPLC and LC-MS/MS methods for the analysis of ivacaftor, its major metabolites and lumacaftor in plasma and sputum of cystic fibrosis patients treated with ORKAMBI or KALYDECO. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1038:57-62. DOI: https://doi.org/10.1016/j.jchromb.2016.10.026
Maillé É, Ruffin M, Adam D, Messaoud H, Lafayette SL, McKay G, et al. Quorum sensing down-regulation counteracts the negative impact of pseudomonas aeruginosa on CFTR channel expression, function and rescue in human airway epithelial cells. Front Cell Infect Microbiol. 2017;7:470. DOI: https://doi.org/10.3389/fcimb.2017.00470
Laselva O, Stone TA, Bear CE, Deber CM. Anti-Infectives restore ORKAMBI® rescue of f508del-CFTR function in human bronchial epithelial cells infected with clinical strains of P. aeruginosa. Biomolecules. 2020;10:334. DOI: https://doi.org/10.3390/biom10020334
European Medicines Agency. Kalydeco. [consultado 2023 ago 06]. Disponível em: https://www.ema.europa.eu/en/medicines/human/EPAR/kalydeco.
Cystic Fibrosis Foundation. CFTR modulator therapies. [consultado 2023 ago 06]. Disponível em: https://www.cff.org/managing-cf/cftr-modulatortherapies.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Acta Médica Portuguesa
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All the articles published in the AMP are open access and comply with the requirements of funding agencies or academic institutions. The AMP is governed by the terms of the Creative Commons ‘Attribution – Non-Commercial Use - (CC-BY-NC)’ license, regarding the use by third parties.
It is the author’s responsibility to obtain approval for the reproduction of figures, tables, etc. from other publications.
Upon acceptance of an article for publication, the authors will be asked to complete the ICMJE “Copyright Liability and Copyright Sharing Statement “(http://www.actamedicaportuguesa.com/info/AMP-NormasPublicacao.pdf) and the “Declaration of Potential Conflicts of Interest” (http:// www.icmje.org/conflicts-of-interest). An e-mail will be sent to the corresponding author to acknowledge receipt of the manuscript.
After publication, the authors are authorised to make their articles available in repositories of their institutions of origin, as long as they always mention where they were published and according to the Creative Commons license.