Use of Gadolinium in Follow-Up MRI of Multiple Sclerosis Patients: Current Recommendations

Authors

  • Andreia Cruz Faculdade de Medicina. Universidade de Coimbra. Coimbra.
  • Daniela Pereira Área Funcional de Neurorradiologia. Serviço de Imagem Médica. Centro Hospitalar e Universitário de Coimbra. Coimbra.
  • Sónia Batista Faculdade de Medicina. Universidade de Coimbra. Coimbra; Serviço de Neurologia. Centro Hospitalar e Universitário de Coimbra. Coimbra.

DOI:

https://doi.org/10.20344/amp.20467

Keywords:

Contrast Media, Gadolinium, Magnetic Resonance Imaging, Multiple Sclerosis/diagnostic imaging

Abstract

Multiple sclerosis is the most frequent demyelinating disease of the central nervous system and is characterized by early onset and progressive disability. Magnetic resonance imaging, due to its high sensitivity and specificity in the detection of demyelinating lesions, is the most useful diagnostic test for this disease, with the administration of gadolinium-based contrast agents being an important contribution to imaging interpretation. Although contrast is essential for diagnostic purposes, its routine use in monitoring disease activity, response to treatment, and related complications is controversial. This article aims to collate current recommendations regarding the use of gadolinium in the imaging follow-up of multiple sclerosis and establish effective and safe guidelines for clinical practice. The literature review was conducted in PubMed, using the terms ‘multiple sclerosis’, ‘magnetic resonance imaging’ and ‘gadolinium’, or ‘contrast media’. Articles published between January 2013 and January 2023 concerning the safety of gadolinium and the use of these contrast agents in follow-up scans of adult patients diagnosed with multiple sclerosis were selected. Although no biological or clinical consequences have been unequivocally attributed to the retention of gadolinium in the brain, which were mostly reported with linear agents, health authorities have been recommending the restriction of contrast to essential clinical circumstances. In multiple sclerosis, the detection of subclinical contrast-enhancing lesions with no corresponding new/ enlarging T2-WI lesions is rare and has a questionable impact on therapeutic decisions. On the other hand, gadolinium has a higher sensitivity in the differential diagnosis of relapses, in the detection of recent disease activity, before and after treatment initiation, and in patients with a large lesion burden or diffuse/confluent T2-WI lesions. Contrary to progressive multifocal leukoencephalopathy screening, monitoring of immune restitution inflammatory syndrome also benefits from the administration of gadolinium. It is feasible and safe to exclude gadolinium-based contrast agents from routine follow-up scans of multiple sclerosis, despite their additional contribution in specific clinical circumstances that should be acknowledged by the neurologist and neuroradiologist.

Downloads

Download data is not yet available.

References

Kavaliunas A, Danylaite Karrenbauer V, Hillert J. Socioeconomic consequences of multiple sclerosis-a systematic literature review. Acta Neurol Scand. 2021;143:587-601.

Branco M, Alves I, Martins da Silva A, Pinheiro J, Sá MJ, Correia I, et al. The epidemiology of multiple sclerosis in the entre Douro e Vouga region of northern Portugal: a multisource population-based study. BMC Neurol. 2020;20:195.

Mattay RR, Davtyan K, Bilello M, Mamourian AC. Do all patients with multiple sclerosis benefit from the use of contrast on serial followup MR imaging? A retrospective analysis. AJNR Am J Neuroradiol. 2018;39:2001-6.

Dighriri IM, Aldalbahi AA, Albeladi F, Tahiri AA, Kinani EM, Almohsen RA, et al. An overview of the history, pathophysiology, and pharmacological interventions of multiple sclerosis. Cureus. 2023;15:e33242.

McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50:121-7.

Martín-Aguilar L, Presas-Rodriguez S, Rovira À, Capellades J, Massuet-Vilamajó A, Ramió-Torrentà L, et al. Gadolinium-enhanced brain lesions in multiple sclerosis relapse. Neurologia. 2022;37:557-63.

Gentili L, Capuano R, Gaetani L, Fiacca A, Bisecco A, d’Ambrosio A, et al. Impact of post-contrast MRI in the definition of active multiple sclerosis. J Neurol Sci. 2022;440:120338.

Sadigh G, Saindane AM, Waldman AD, Lava NS, Hu R. Comparison of unenhanced and gadolinium-enhanced imaging in multiple sclerosis: is contrast needed for routine follow-up MRI? AJNR Am J Neuroradiol. 2019;40:1476-80.

Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli O, De Stefano N, et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain. 2019;142:1858-75.

Wattjes MP, Ciccarelli O, Reich DS, Banwell B, de Stefano N, Enzinger C, et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021;20:653-70.

Maghzi AH, Sicotte NL, Waubant E. Do you believe in Gad? Mult Scler Relat Disord. 2020;44:102299.

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162-73.

Granziera C, Reich DS. Gadolinium should always be used to assess disease activity in MS - Yes. Mult Scler. 2020;26:765-6.

Asadollahzade E, Ghadiri F, Ebadi Z, Moghadasi AN. The benefits and side effects of gadolinium-based contrast agents in multiple sclerosis patients. Rev Assoc Med Bras. 2022;68:979-81.

Rovira À, Wattjes MP. Gadolinium should always be used to assess disease activity in MS - No. Mult Scler. 2020;26:767-9.

Woolen SA, Shankar PR, Gagnier JJ, MacEachern MP, Singer L, Davenport MS. Risk of nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group ii gadoliniumbased contrast agent: a systematic review and meta-analysis. JAMA Intern Med. 2020;180:223-30.

Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1- weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834-41.

McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, et al. Intracranial gadolinium deposition after contrastenhanced MR imaging. Radiology. 2015;275:772-82.

Roccatagliata L, Vuolo L, Bonzano L, Pichiecchio A, Mancardi GL. Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1- weighted MR images is associated with the secondary progressive subtype. Radiology. 2009;251:503-10.

Hannoun S, Issa R, El Ayoubi NK, Haddad R, Baalbaki M, Yamout BI, et al. Gadoterate meglumine administration in multiple sclerosis has no effect on the dentate nucleus and the globus pallidus signal intensities. Acad Radiol. 2019;26:e284-91.

Malhotra A, LeSar B, Wu X, Durand D, Das N, Anzai Y, et al. Progressive T1 shortening of the dentate nucleus in patients with multiple sclerosis: result of multiple administrations of linear gadolinium contrast agents versus intrinsic disease. AJR Am J Roentgenol. 2018;211:1099-105.

Tedeschi E, Palma G, Canna A, Cocozza S, Russo C, Borrelli P, et al. In vivo dentate nucleus MRI relaxometry correlates with previous administration of Gadolinium-based contrast agents. Eur Radiol. 2016;26:4577-84.

Forslin Y, Martola J, Bergendal Å, Fredrikson S, Wiberg MK, Granberg T. Gadolinium Retention in the brain: an MRI relaxometry study of linear and macrocyclic gadolinium-based contrast agents in multiple sclerosis. AJNR Am J Neuroradiol. 2019;40:1265-73.

Barisano G, Bigjahan B, Metting S, Cen S, Amezcua L, Lerner A, et al. Signal Hyperintensity on unenhanced T1-weighted brain and cervical spinal cord MR Images after multiple doses of linear gadolinium-based contrast agent. AJNR Am J Neuroradiol. 2019;40:1274-81.

Errante Y, Cirimele V, Mallio CA, Di Lazzaro V, Zobel BB, Quattrocchi CC. Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest Radiol. 2014;49:685-90.

Food and Drug Administration. FDA Drug Safety Communication: FDA evaluating the risk of brain deposits with repeated use of gadoliniumbased contrast agents for magnetic resonance imaging (MRI). [cited 2022 May 15]. Available from: https://www.fda.gov/drugs/drug-safetyand-availability/fda-drug-safety-communication-fda-evaluating-riskbrain-deposits-repeated-use-gadolinium-based.

Grahl S, Bussas M, Pongratz V, Kirschke JS, Zimmer C, Berthele A, et al. T1-weighted intensity increase after a single administration of a linear gadolinium-based contrast agent in multiple sclerosis. Clin Neuroradiol. 2021;31:235-43.

Schlemm L, Chien C, Bellmann-Strobl J, Dörr J, Wuerfel J, Brandt AU, et al. Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients. Mult Scler. 2017;23:963-72.

Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB. Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol. 2017;16:564-70.

Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol. 2016;51:447-53.

DeBevits JJ, Munbodh R, Bageac D, Wu R, DiCamillo PA, Hu C, et al. Gray matter nucleus hyperintensity after monthly triple-dose gadopentetate dimeglumine with long-term magnetic resonance imaging. Invest Radiol. 2020;55:629-35.

Kang H, Hii M, Le M, Tam R, Riddehough A, Traboulsee A, et al. Gadolinium deposition in deep brain structures: relationship with dose and ionization of linear gadolinium-based contrast agents. AJNR Am J Neuroradiol. 2018;39:1597-603.

Eisele P, Szabo K, Ebert A, Radbruch A, Platten M, Schoenberg SO, et al. Diffusion-weighted imaging of the dentate nucleus after repeated application of gadolinium-based contrast agents in multiple sclerosis. Magn Reson Imaging. 2019;58:1-5.

Eisele P, Szabo K, Alonso A, Ong M, Platten M, Schoenberg SO, et al. Lack of T1 hyperintensity in the dentate nucleus after 15 administrations of a macrocyclic contrast agent in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2018;89:324-6.

Hannoun S, Kocevar G, Codjia P, Maucort-Boulch D, Cotton F, Vukusic S, et al. Signal intensity evaluation in the dentate nucleus and subcortical gray matter: effect of several administrations of gadoterate meglumine in multiple sclerosis. Clin Neuroradiol. 2022;32:677-85.

Tedeschi E, Cocozza S, Borrelli P, Ugga L, Morra VB, Palma G. Longitudinal assessment of dentate nuclei relaxometry during massive gadobutrol exposure. Magn Reson Med Sci. 2018;17:100-4.

Jaulent P, Hannoun S, Kocevar G, Rollot F, Durand-Dubief F, Vukusic S, et al. Weekly enhanced T1-weighted MRI with gadobutrol injections in MS patients: is there a signal intensity increase in the dentate nucleus and the globus pallidus? Eur J Radiol. 2018;105:204-8.

Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol. 2016;26:807-15.

Splendiani A, Perri M, Marsecano C, Vellucci V, Michelini G, Barile A, et al. Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: a retrospective study in 158 multiple sclerosis (MS) patients. Radiol Med. 2018;123:125-34.

European Medicines Agency. EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans. European Medicines Agency. 2017 [cited 2022 Jul 29]. Available from: https://www.ema.europa.eu/en/news/emas-final-opinion-confirms-restrictions-use-lineargadolinium-agents-body-scans.

Eisele P, Konstandin S, Szabo K, Ong M, Zöllner F, Schad LR, et al. Sodium MRI of T1 high signal intensity in the dentate nucleus due to gadolinium deposition in multiple sclerosis. J Neuroimaging. 2017;27:372-5.

Kühn I, Maschke H, Großmann A, Hauenstein K, Weber MA, Zettl UK, et al. Dentate-nucleus gadolinium deposition on magnetic resonance imaging: ultrasonographic and clinical correlates in multiple sclerosis patients. Neurol Sci. 2022;43:2631-9.

Forslin Y, Shams S, Hashim F, Aspelin P, Bergendal G, Martola J, et al. Retention of gadolinium-based contrast agents in multiple sclerosis: retrospective analysis of an 18-year longitudinal study. AJNR Am J Neuroradiol. 2017;38:1311-6.

Cocozza S, Pontillo G, Lanzillo R, Russo C, Petracca M, Di Stasi M, et al. MRI features suggestive of gadolinium retention do not correlate with expanded disability status scale worsening in multiple sclerosis. Neuroradiology. 2019;61:155-62.

Zivadinov R, Bergsland N, Hagemeier J, Ramasamy DP, Dwyer MG, Schweser F, et al. Cumulative gadodiamide administration leads to brain gadolinium deposition in early MS. Neurology. 2019;93:e611-23.

Perrotta G, Metens T, Absil J, Lemort M, Manto M. Absence of clinical cerebellar syndrome after serial injections of more than 20 doses of gadoterate, a macrocyclic GBCA: a monocenter retrospective study. J Neurol. 2017;264:2277-83.

Welk B, McArthur E, Morrow SA, MacDonald P, Hayward J, Leung A, et al. Association between gadolinium contrast exposure and the risk of parkinsonism. JAMA. 2016;316:96-8.

Semelka RC, Ramalho M, AlObaidy M, Ramalho J. Gadolinium in humans: a family of disorders. AJR Am J Roentgenol. 2016;207:229-33.

Burke LM, Ramalho M, AlObaidy M, Chang E, Jay M, Semelka RC. Self-reported gadolinium toxicity: a survey of patients with chronic symptoms. Magn Reson Imaging. 2016;34:1078-80.

Food and Drug Administration. Center for Drug Evaluation and Research. FDA Drug Safety Communication: FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warnings. [cited 2022 May 20]. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fdawarns-gadolinium-based-contrast-agents-gbcas-are-retained-body.

Mallio CA, Quattrocchi CC, Rovira À, Parizel PM. Gadolinium deposition safety: seeking the patient’s perspective. AJNR Am J Neuroradiol. 2020;41:944-6.

Eichinger P, Schön S, Pongratz V, Wiestler H, Zhang H, Bussas M, et al. Accuracy of unenhanced MRI in the detection of new brain lesions in multiple sclerosis. Radiology. 2019;291:429-35.

Dadar M, Mahmoud S, Narayanan S, Collins DL, Arnold DL, Maranzano J. Diffusely abnormal white matter converts to T2 lesion volume in the absence of MRI-detectable acute inflammation. Brain. 2022;145:2008-17.

Río J, Auger C, Rovira À. MR imaging in monitoring and predicting treatment response in multiple sclerosis. Neuroimaging Clin N Am. 2017;27:277-87.

Wattjes MP, Rovira À, Miller D, Yousry TA, Sormani MP, de Stefano MP, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis - establishing disease prognosis and monitoring patients. Nat Rev Neurol. 2015;11:597-606.

Johnston G, Johnson T, Solomon AJ, Bazylewicz M, Allison JB, Azalone E, et al. Limited utility of gadolinium contrast administration in routine multiple sclerosis surveillance. J Neuroimaging. 2021;31:103-7.

Zarei F, Ghaedian M, Ghaedian T. The role of contrast-enhanced and non-contrast-enhanced MRI in the follow-up of multiple sclerosis. Acta Radiol. 2021;62:916-21.

Tsantes E, Curti E, Ganazzoli C, Puci F, Bazzurri V, Fiore A, et al. The contribution of enhancing lesions in monitoring multiple sclerosis treatment: is gadolinium always necessary? J Neurol. 2020;267:2642-7.

Karimian-Jazi K, Wildemann B, Diem R, Schwarz D, Hielscher T, Wick W, et al. Gd contrast administration is dispensable in patients with MS without new T2 lesions on follow-up MRI. Neurol Neuroimmunol Neuroinflamm. 2018;5:e480.

Rudie JD, Mattay RR, Schindler M, Steingall S, Cook TS, Loevner LA, et al. An initiative to reduce unnecessary gadolinium-based contrast in multiple sclerosis patients. J Am Coll Radiol. 2019;16:1158-64.

Mattay RR, Davtyan K, Rudie JD, Mattay GS, Jacobs DA, Schindler M, et al. Economic impact of selective use of contrast for routine follow-up MRI of patients with multiple sclerosis. J Neuroimaging. 2022;32:656-66.

Traboulsee A, Li D. Addressing concerns regarding the use of gadolinium in a standardized MRI protocol for the diagnosis and followup of multiple sclerosis. AJNR Am J Neuroradiol. 2016;37:e82-3.

Gasperini C, Prosperini L, Rovira À, Tintoré M, Sastre-Garriga J, Tortorella C, et al. Scoring the 10-year risk of ambulatory disability in multiple sclerosis: the RoAD score. Eur J Neurol. 2021;28:2533-42.

Dallera G, Affinito G, Caliendo D, Petracca M, Carotenuto A, Triassi M, et al. The independent contribution of brain, spinal cord and gadolinium MRI in treatment decision in multiple sclerosis: a population-based retrospective study. Mult Scler Relat Disord. 2022;69:104423.

Koch MW, Mostert J, Greenfield J, Liu WQ, Metz L. Gadolinium enhancement on cranial MRI in multiple sclerosis is age dependent. J Neurol. 2020;267:2619-24.

Saindane AM. Is gadolinium-based contrast material needed for mri follow-up of multiple sclerosis? Radiology. 2019;291:436-7.

Zecca C, Disanto G, Sormani MP, Riccitelli GC, Cianfoni A, Del Grande F, et al. Relevance of asymptomatic spinal MRI lesions in patients with multiple sclerosis. Mult Scler. 2016;22:782-91.

Rovira A, Auger C. Spinal cord in multiple sclerosis: magnetic resonance imaging features and differential diagnosis. Semin Ultrasound CT MR. 2016;37:396-410.

Gupta A, Al-Dasuqi K, Xia F, Askin G, Zhao Y, Delgado D, et al. The use of noncontrast quantitative mri to detect gadolinium-enhancing multiple sclerosis brain lesions: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2017;38:1317-22.

Absinta M, Vuolo L, Rao A, Nair G, Sati P, Cortese IC, et al. Gadoliniumbased MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology. 2015;85:18-28.

Zivadinov R, Ramasamy DP, Hagemeier J, Kolb C, Bergsland N, Schweser F, et al. Evaluation of leptomeningeal contrast enhancement using pre-and postcontrast subtraction 3D-FLAIR imaging in multiple sclerosis. AJNR Am J Neuroradiol. 2018;39:642-7.

Absinta M, Cortese IC, Vuolo L, Nair G, de Alwis MP, Ohayon J, et al. Leptomeningeal gadolinium enhancement across the spectrum of chronic neuroinflammatory diseases. Neurology. 2017;88:1439-44.

Weber CE, Wittayer M, Kraemer M, Dabringhaus A, Bail K, Platten M, et al. Long-term dynamics of multiple sclerosis iron rim lesions. Mult Scler Relat Disord. 2022;57:103340.

Elliott C, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, Bernasconi C, et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler. 2019;25:1915-25.

Coffman CH, White R, Subramanian K, Buch S, Bernitsas E, Haacke EM. Quantitative susceptibility mapping of both ring and non-ring white matter lesions in relapsing remitting multiple sclerosis. Magn Reson Imaging. 2022;91:45-51.

Wattjes MP, Wijburg MT, van Eijk J, Frequin S, Uitdehaag BM, Barkhof F, et al. Inflammatory natalizumab-associated PML: baseline characteristics, lesion evolution and relation with PML-IRIS. J Neurol Neurosurg Psychiatry. 2018;89:535-41.

Scarpazza C, Signori A, Cosottini M, Sormani MP, Gerevini S, Capra R. Should frequent MRI monitoring be performed in natalizumabtreated MS patients? A contribution to a recent debate. Mult Scler. 2020;26:1227-36.

Igra MS, Paling D, Wattjes MP, Connolly DJ, Hoggard N. Multiple sclerosis update: use of MRI for early diagnosis, disease monitoring and assessment of treatment related complications. Br J Radiol. 2017;90:20160721.

Bellanger G, Biotti D, Patsoura S, Ciron J, Ferrier M, Gramada R, et al. What is the relevance of the systematic use of gadolinium during the mri follow-up of multiple sclerosis patients under natalizumab? Clin Neuroradiol. 2020;30:553-8.

McGuigan C, Craner M, Guadagno J, Kapoor R, Mazibrada G, Molyneux P, et al. Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. J Neurol Neurosurg Psychiatry. 2016;87:117-25.

Rovira A, Auger C, Huerga E, Corral JF, Mitjana R, Sastre-Garriga J, et al. Cumulative dose of macrocyclic gadolinium-based contrast agent improves detection of enhancing lesions in patients with multiple sclerosis. AJNR Am J Neuroradiol. 2017;38:1486-93.

Brisset JC, Kremer S, Hannoun S, Bonneville F, Durand-Dubief F, Tourdias T, et al. New OFSEP recommendations for MRI assessment of multiple sclerosis patients: special consideration for gadolinium deposition and frequent acquisitions. J Neuroradiol. 2020;47:250-8.

Traboulsee A, Létourneau-Guillon L, Freedman MS, O’Connor PW, Bharatha A, Chakraborty S, et al. Canadian expert panel recommendations for mri use in ms diagnosis and monitoring. Can J Neurol Sci. 2015;42:159-67.

Vågberg M, Axelsson M, Birgander R, Burman J, Cananau C, Forslin Y, et al. Guidelines for the use of magnetic resonance imaging in diagnosing and monitoring the treatment of multiple sclerosis: recommendations of the Swedish Multiple Sclerosis Association and the Swedish Neuroradiological Society. Acta Neurol Scand. 2017;135:17-24.

The Consortium of Multiple Sclerosis Centers. Revised Guidelines of the consortium of MS centers MRI protocol for the diagnosis and follow-up of MS. 2018. [cited 2022 May 20]. Available from: https://www.mscare.org/page/MRI_protocol.

Brisset JC, Vukusic S, Cotton F. Update on brain MRI for the diagnosis and follow-up of MS patients. Presse Med. 2021;50:104067.

Published

2024-01-03

How to Cite

1.
Cruz A, Pereira D, Batista S. Use of Gadolinium in Follow-Up MRI of Multiple Sclerosis Patients: Current Recommendations. Acta Med Port [Internet]. 2024 Jan. 3 [cited 2025 Jan. 23];37(1):53-6. Available from: https://actamedicaportuguesa.com/revista/index.php/amp/article/view/20467

Issue

Section

Guidelines