Practical Guidance on the Detection of NTRK Fusions in Sarcomas: Current Status and Diagnostic Challenges
DOI:
https://doi.org/10.20344/amp.21925Keywords:
Gene Fusion, Oncogene Proteins, Fusion/genetics, Receptor, trkA/genetics, Sarcoma/geneticsAbstract
Sarcomas are a rare and heterogeneous group of mesenchymal malignant tumors and account for approximately 1% of all adult cancers and around 20% of all pediatric solid tumors in Europe. Technology advances have enabled a more accurate and efficient characterization of the molecular mechanisms underlying the pathogenesis of sarcoma subtypes and revealed novel and unexpected therapeutic targets with prognostic/predictive biomarkers, namely the neurotrophic tyrosine receptor kinase (NTRK) gene fusion. The NTRK fusion assessment has recently become a standard part of management for patients with unresectable locally advanced or metastatic cancers and has been identified in various tumor types. In the more prevalent adult and pediatric sarcomas, NTRK fusions are present in 1% and 20%, respectively, and in more than 90% of very rare subsets of tumors. The inhibition of TRK activity with first-generation TRK inhibitors has been found to be effective and well tolerated in adult and pediatric patients, independently of the tumor type. Overall, the therapeutic benefit to those patients compensates for the difficulties of identifying NTRK gene fusions. However, the rarity and diagnostic complexity of NTRK gene fusions raise several questions and challenges for clinicians. To address these issues, an expert panel of medical and pediatric oncologists, radiologists, surgeons, orthopedists, and pathologists reviewed the recent literature and discussed the current status and challenges, proposing a diagnostic algorithm for identifying NTRK fusion sarcomas. The aim of this article is to review the updated information on this issue and to provide the experts’ recommendations and practical guidance on the optimal management of patients with soft tissue sarcomas, infantile fibrosarcoma, gastrointestinal stromal tumors, and osteosarcoma.
Downloads
References
Demetri GD, Antonescu CR, Bjerkehagen B, Bovée JV, Boye K, Chacón M, et al. Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas: expert recommendations from the World Sarcoma Network. Ann Oncol. 2020;31:1506-17.
Stiller CA, Trama A, Serraino D, Rossi S, Navarro C, Chirlaque MD, et al. Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. Eur J Cancer. 2013;49:684-95.
Agnoletto C, Caruso C, Garofalo C. Heterogeneous circulating tumor cells in sarcoma: implication for clinical practice. Cancers. 2021;13:2189.
McConnell L, Houghton O, Stewart P, Gazdova J, Srivastava S, Kim C, et al. A novel next generation sequencing approach to improve sarcoma diagnosis. Mod Pathol. 2020;33:1350-9.
Szurian K, Kashofer K, Liegl-Atzwanger B. Role of next-generation sequencing as a diagnostic tool for the evaluation of bone and softtissue tumors. Pathobiology. 2018;84:323-38.
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71:7-33.
Bleloch JS, Ballim RD, Kimani S, Parkes J, Panieri E, Willmer T, et al. Managing sarcoma: where have we come from and where are we going? Ther Adv Med Oncol. 2017;9:637-59.
Dangoor A, Seddon B, Gerrand C, Grimer R, Whelan J, Judson I. UK guidelines for the management of soft tissue sarcomas. Clin Sarcoma Res. 2016;6:1-26.
Damerell V, Pepper MS, Prince S. Molecular mechanisms underpinning sarcomas and implications for current and future therapy. Signal Transduct Target Ther. 2021;6:246.
Grünewald TG, Alonso M, Avnet S, Banito A, Burdach S, Cidre-Aranaz F, et al. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med. 2020;12:1-33.
Gómez J, Tsagozis P. Multidisciplinary treatment of soft tissue sarcomas: an update. World J Clin Oncol. 2020;11:180-9.
Xu L, Xie X, Shi X, Zhang P, Liu A, Wang J, et al. Potential application of genomic profiling for the diagnosis and treatment of patients with sarcoma. Oncology Lett. 2021;21:1-12.
Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15:731-47.
Kheder ES, Hong DS. Emerging targeted therapy for tumors with NTRK fusion proteins. Clin Cancer Res. 2018;24:5807-14.
Brčić I, Godschachner TM, Bergovec M, Igrec J, Till H, Lackner H, et al. Broadening the spectrum of NTRK rearranged mesenchymal tumors and usefulness of pan-TRK immunohistochemistry for identification of NTRK fusions. Mod Pathol. 2021;34:396-407.
Solomon JP, Linkov I, Rosado A, Mullaney K, Rosen EY, Frosina D, et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol. 2020;33:38-46.
Miettinen M, Felisiak-Golabek A, Luiña Contreras A, Glod J, Kaplan RN, Killian JK, et al. New fusion sarcomas: histopathology and clinical significance of selected entities. Hum Pathol. 2019;86:57-65.
Siozopoulou V, Smits E, De Winne K, Marcq E, Pauwels P. NTRK fusions in sarcomas: diagnostic challenges and clinical aspects. Diagnostics. 2021;11:478.
Hechtman JF. NTRK insights: best practices for pathologists. Mod Pathol. 2022;35:298-305.
Simmons C, Deyell RJ, MacNeill AJ, Vera-Badillo FE, Smrke A, Abdul Razak AR, et al. Canadian consensus on TRK-inhibitor therapy for NTRK fusion-positive sarcoma. Int J Cancer. 2021;149:1691-704.
Lassen U. How I treat NTRK gene fusion-positive cancers. ESMO Open. 2019;4:S612.
Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5:25-34.
Martin-Zanca D, Hughes SH, Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature. 1986;319:743-8.
Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18:184-7.
Lange AM, Lo HW. Inhibiting TRK proteins in clinical cancer therapy. Cancers. 2018;10:105.
Kummar S, Lassen UN. TRK Inhibition: a new tumor-agnostic treatment strategy. Target Oncol. 2018;13:545-56.
Amatu A, Sartore-Bianchi A, Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO open. 2016;1:e000023.
Ardakani AH, Ware H, Woollard A, Gikas P. Soft tissue sarcoma: recognizing a rare disease. Cleve Clin J Med. 2022;89:73-80.
Gronchi A, Miah AB, Dei Tos AP, Abecassis N, Bajpai J, Bauer S, et al. Soft tissue and visceral sarcomas: ESMO–EURACAN–GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021;32:1348-65.
Westphalen CB, Krebs MG, Le Tourneau C, Sokol ES, Maund SL, Wilson TR, et al. Genomic context of NTRK1/2/3 fusion-positive tumours from a large real-world population. NPJ Precis Oncolo. 2021;5:1-9.
Assi T, Rassy E, Nassereddine H, Farhat F, Karak FE, Kattan J, et al. TRK inhibition in soft tissue sarcomas: a comprehensive review. Semin Oncol. 2020;47:73-84.
Zhao X, Kotch C, Fox E, Surrey LF, Wertheim GB, Baloch ZW, et al. NTRK fusions identified in pediatric tumors: the frequency, fusion partners, and clinical outcome. JCO Precis Oncol. 2021;1:PO.20.00250.
Orbach D, Brennan B, De Paoli A, Gallego S, Mudry P, Francotte N, et al. Conservative strategy in infantile fibrosarcoma is possible: the European paediatric soft tissue sarcoma study group experience. Eur J Cancer. 2016;57:1-9.
Orbach D, Sparber-Sauer M, Laetsch TW, Minard-Colin V, Bielack SS, Casanova M, et al. Spotlight on the treatment of infantile fibrosarcoma in the era of neurotrophic tropomyosin receptor kinase inhibitors: International consensus and remaining controversies. Eur J Cancer. 2020;137:183-92.
Sheng WQ, Hisaoka M, Okamoto S, Tanaka A, Meis-Kindblom JM, Kindblom LG, et al. Congenital-infantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues. Am J Clin Pathol. 2001;115:348-55.
Albert CM, Davis JL, Federman N, Casanova M, Laetsch TW. TRk fusion cancers in children: a clinical review and recommendations for screening. J Clin Oncol. 2019;37:513-24.
Casali PG, Abecassis N, Bauer S, Biagini R, Bielack S, Bonvalot S, et al. Gastrointestinal stromal tumours: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:iv68-78.
Dudzisz-Śledź M, Bylina E, Teterycz P, Rutkowski P. Treatment of metastatic gastrointestinal stromal tumors (GIST): a focus on older patients. drugs aging. 2021;38:375-96.
Lasota J, Miettinen M. KIT and PDGFRA mutations in gastrointestinal stromal tumors (GISTs). Semin Diagn Pathol. 2006;23:91-102.
Quiroz HJ, Willobee BA, Sussman MS, Fox BR, Thorson CM, Sola JE, et al. Pediatric gastrointestinal stromal tumors—a review of diagnostic modalities. Transl Gastroenterol Hepatol. 2018;3:1-8.
Shi E, Chmielecki J, Tang CM, Wang K, Heinrich MC, Kang G, et al. FGFR1 and NTRK3 actionable alterations in “wild-type” gastrointestinal stromal tumors. J Transl Med. 2016;14:1-11.
Strauss SJ, Frezza AM, Abecassis N, Bajpai J, Bauer S, Biagini R, et al. Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN paedcan clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 2021;32:1520-36.
Odri GA, Tchicaya-Bouanga J, Yoon DJ, Modrowski D. Metastatic progression of osteosarcomas: a review of current knowledge of environmental versus oncogenic drivers. Cancers. 2022;14:1-16.
Ameline B, Saba KH, Kovac M, Magnusson L, Witt O, Bielack S, et al. NTRK fusions in osteosarcoma are rare and non-functional events. J Pathol Clin Res. 2020;6:107-12.
Lam SW, Briaire-de-Bruijn IH, van Wezel T, Cleven AH, Hogendoorn PC, Cleton-Jansen AM, et al. NTRK fusions are extremely rare in bone tumours. Histopathology. 2021;79:880-5.
Hechtman JF, Benayed R, Hyman DM, Drilon A, Zehir A, Frosina D, et al. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol. 2017;41:1547-51.
Marchiò C, Scaltriti M, Ladanyi M, Iafrate AJ, Bibeau F, Dietel M, et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol. 2019;30:1417- 27.
Karakas C, Giampoli EJ, Love T, Hicks DG, Velez MJ. Validation and interpretation of Pan-TRK immunohistochemistry: a practical approach and challenges with interpretation. Diagn Pathol. 2024;19:10.
Agaram NP, Zhang L, Sung YS, Chen CL, Chung CT, Antonescu CR, et al. Recurrent NTRK1 gene fusions define a novel subset of locally aggressive lipofibromatosis-like neural tumors. Am J Surg Pathol. 2016;40:1407-16.
Tvrdík D, Povýsil C, Svatosová J, Dundr P. Molecular diagnosis of synovial sarcoma: RT-PCR detection of SYT-SSX1/2 fusion transcripts in paraffin-embedded tissue. Med Sci Monit. 2005;11:MT1-7.
Ueno-Yokohata H, Okita H, Nakasato K, Kiyotani C, Kato M, Matsumoto K, et al. Establishment of multiplex RT-PCR to detect fusion genes for the diagnosis of Ewing sarcoma. Diagn Pathol. 2021;16:1-10.
Bourgeois JM, Knezevich SR, Mathers JA, Sorensen PH. Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol. 2000;24:937-46.
Beadling C, Wald AI, Warrick A, Neff TL, Zhong S, Nikiforov YE, et al. A multiplexed amplicon approach for detecting gene fusions by nextgeneration sequencing. J Mol Diagn. 2016;18:165-75.
Chrzanowska NM, Kowalewski J, Lewandowska MA. Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors. Molecules. 2020;25:1-21.
Kerr KM, López-Ríos F. Precision medicine in NSCLC and pathology: how does ALK fit in the pathway? Ann Oncol. 2016;27:Sii16-iii24.
Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378:731-9.
Gao X, Sholl LM, Nishino M, Heng JC, Jänne PA, Oxnard GR. Clinical implications of variant ALK FISH rearrangement patterns. J Thor Oncol. 2015;10:1648-52.
Hsiao SJ, Zehir A, Sireci AN, Aisner DL. Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy. J Mol Diagn. 2019;21:553-71.
Pfarr N, Kirchner M, Lehmann U, Leichsenring J, Merkelbach-Bruse S, Glade J, et al. Testing NTRK testing: wet-lab and in silico comparison of RNA-based targeted sequencing assays. Genes Chromosomes Cancer. 2020;59:178-88.
Salmon CR, Silvério KG, Giorgetti AP, Sallum EA, Casati MZ, Nociti FH. Gene expression analysis in microdissected samples from decalcified tissues. Diagn Mol Pathol. 2012;21:120-6.
Goytain A, Ng T. NanoString ncounter technology: high-throughput RNA validation. Methods Mol Biol. 2020;2079:125-39.
de Oliveira Cavagna R, de Andrade ES, Tadin Reis M, de Paula FE, Noriz Berardinelli G, Bonatelli M, et al. Detection of NTRK fusions by RNA-based nCounter is a feasible diagnostic methodology in a realworld scenario for non-small cell lung cancer assessment. Sci Rep. 2023;13:21168.
Chilimoniuk J, Erol A, Rödiger S, Burdukiewicz M. Challenges and opportunities in processing NanoString nCounter data. Comput Struct Biotechnol J. 2024;23:1951-8.
Kummar S, Italiano A, Brose MS, Carlson JJ, Sullivan SD, Lassen U, et al. Diagnosis and management of TRK fusion cancer. Am J Manag Care. 2022;28:S15-25.
Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, et al. An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov. 2015;5:1049-57.
Ghilardi JR, Freeman KT, Jimenez-Andrade JM, Mantyh WG, Bloom AP, Kuskowski MA, et al. Administration of a tropomyosin receptor kinase inhibitor attenuates sarcoma-induced nerve sprouting, neuroma formation and bone cancer pain. Mol Pain. 2010;6:87.
Kummar S, Shen L, Hong DS, McDermott R, Keedy VL, Casanova M, et al. Larotrectinib efficacy and safety in adult patients with tropomyosin receptor kinase fusion sarcomas. Cancer. 2023;129:3772-82.
Hong DS, DuBois SG, Kummar S, Farago AF, Albert CM, Rohrberg KS, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020;21:531-40.
Laetsch TW, DuBois SG, Mascarenhas L, Turpin B, Federman N, Albert CM, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018;19:705-14.
Hong DS, Bauer TM, Lee JJ, Dowlati A, Brose MS, Farago AF, et al. Larotrectinib in adult patients with solid tumours: a multi-centre, openlabel, phase i dose-escalation study. Ann Oncol. 2019;30:325-31.
Yang AT, Laetsch TW. Safety of current treatment options for NTRK fusion-positive cancers. Expert Opin Drug Saf. 2023;22:1073-89.
McDermott R, van Tilburg CM, Farago AF, Kummar S, Tan DS, Albert CM, et al. 1955P survival benefits of larotrectinib in an integrated dataset of patients with TRK fusion cancer. Ann Oncol. 2020;31:S1101-2.
Lin JJ, Kummar S, Tan DS, Lassen UN, Leyvraz S, Liu Y, et al. Longterm efficacy and safety of larotrectinib in patients with TRK fusionpositive lung cancer. J Clin Oncol. 2021;39:S9109.
Kummar S, Van Tilburg CM, Albert CM, Berlin J, Farago AF, McDermott RS, et al. Quality of life of adults and children with TRK fusion cancer treated with larotrectinib compared to the general population. J Clin Oncol. 2020;38:S3614.
Ziegler DS, Wong M, Mayoh C, Kumar A, Tsoli M, Mould E, et al. Brief report: potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma. Br J Cancer. 2018;119:693-6.
Ziegler DS, Doz F, Geoerger B, Dubois S, Grilley-Olson JE, van Tilburg C, et al. Activity of larotrectinib in TRK fusion cancer patients with primary central nervous system tumours. Ann Oncol. 2019;30:ix124.
Drilon AE, DuBois SG, Farago AF, Geoerger B, Grilley-Olson JE, Hong DS, et al. Activity of larotrectinib in TRK fusion cancer patients with brain metastases or primary central nervous system tumors. J Clin Oncol. 2019;37:S2006.
Doz F, van Tilburg CM, Geoerger B, Højgaard M, Øra I, Boni V, et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro Oncol. 2022;24:997-1007.
DuBois SG, Laetsch TW, Federman N, Turpin BK, Albert CM, Nagasubramanian R, et al. The use of neoadjuvant larotrectinib in the management of children with locally advanced TRK fusion sarcomas. Cancer. 2018;124:4241-7.
Anderson D, Ciomei M, Banfi P, Cribioli S, Ardini E, Galvani A, et al. 310 Inhibition of Trk-driven tumors by the pan-Trk inhibitor RXDX-101. Eur J Cancer. 2014;50:101.
Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol Cancer Ther. 2016;15:628- 39.
Farago AF, Le LP, Zheng Z, Muzikansky A, Drilon A, Patel M, et al. Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol. 2015;10:1670-4.
Demetri GD, Paz-Ares L, Farago AF, Liu SV, Chawla SP, Tosi D, et al. Efficacy and safety of entrectinib in patients with NTRK fusion-positive (NTRK-fp) tumors: pooled analysis of STARTRK-2, STARTRK-1 and ALKA-372-001. Ann Oncol. 2018;29:viii713.
Demetri GD, De Braud F, Drilon A, Siena S, Patel MR, Cho BC, et al. Updated integrated analysis of the efficacy and safety of entrectinib in patients with NTRK fusion-positive solid tumors. Clin Cancer Res. 2022;28:1302-12.
Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago F, et al. Entrectinib in patients with advanced or metastatic NTRK fusionpositive solid tumours: integrated analysis of three phase 1-2 trials Robert. Lancet Oncol. 2020;21:271-82.
Desai AV, Robinson GW, Basu EM, Foster J, Gauvain K, Sabnis A, et al. Updated entrectinib data in children and adolescents with recurrent or refractory solid tumors, including primary CNS tumors. J Clin Oncol. 2020;38:S107.
Perreault S, Chami R, Deyell RJ, Demellawy D El, Ellezam B, Jabado N, et al. Canadian consensus for biomarker testing and treatment of TRK fusion cancer in pediatric patients. Curr Oncol. 2021;28:346-66.
Rangaraju S, Li G, Christiansen J, Hornby Z, Multani P, Esquibel V, et al. TRTH-10. pediatric phase 1/1b study of entrectinib in patients with primary brain tumors, neuroblastoma, and NTRK, ROS1, or ALK fusions. Neuro Oncol. 2017;19:Siv53.
Paz-Ares L, Barlesi F, Siena S, Ahn MJ, Drilon A, Conley A, et al. Patient-reported outcomes from STARTRK-2: a global phase II basket study of entrectinib for ROS1 fusion-positive non-small-cell lung cancer and NTRK fusion-positive solid tumours. ESMO Open. 2021;6:100113.
Cocco E, Schram AM, Kulick A, Misale S, Won HH, Yaeger R, et al. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat Med. 2019;25:1422-7.
Russo M, Misale S, Wei G, Siravegna G, Crisafulli G, Lazzari L, et al. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov. 2016;6:36-44.
Drilon A, Ou SHI, Cho BC, Kim DW, Lee J, Lin JJ, et al. Repotrectinib (Tpx-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations. Cancer Discov. 2018;8:1227-36.
Drilon A, Nagasubramanian R, Blake JF, Ku N, Ebata K, Smith S, et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior trk kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov. 2017;7:963-72.
Murray BW, Rogers E, Zhai D, Deng W, Chen X, Sprengeler PA, et al. Molecular characteristics of repotrectinib that enable potent inhibition of TRK fusion proteins and resistant mutations. Mol Cancer Ther. 2021;20:2446-56.
Weiss LM, Funari VA. NTRK fusions and Trk proteins: what are they and how to test for them. Hum Path. 2021;112:59-69.
Catelain C, Pailler E, Oulhen M, Faugeroux V, Pommier AL, Farace F. Detection of gene rearrangements in circulating tumor cells: examples of ALK-, ROS1-, RET-rearrangements in non-small-cell lung cancer and ERG-rearrangements in prostate cancer. Adv Exp Med Biol. 2017;994:169-79.
Tsoi KM, Wunder JS, Gokgoz N, Darville-O’Quinn P, Prochazka P, Malekoltojari A, et al. Detection and utility of cell-free and circulating tumour DNA in bone and soft-tissue sarcomas. Bone Joint Res. 2021;10:602-10.
Okamura R, Boichard A, Kato S, Sicklick JK, Bazhenova L, Kurzrock R. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precis Oncol. 2018;8:1-20.
Hempel D, Wieland T, Solfrank B, Grossmann V, Steinhard J, Frick A, et al. Antitumor activity of larotrectinib in esophageal carcinoma with NTRK gene amplification. Oncologist. 2020;25:e881-6.
Penault-Llorca F, Rudzinski ER, Sepulveda AR. Testing algorithm for identification of patients with TRK fusion cancer. J Clin Pathol. 2019;72:460-7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Acta Médica Portuguesa

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All the articles published in the AMP are open access and comply with the requirements of funding agencies or academic institutions. The AMP is governed by the terms of the Creative Commons ‘Attribution – Non-Commercial Use - (CC-BY-NC)’ license, regarding the use by third parties.
It is the author’s responsibility to obtain approval for the reproduction of figures, tables, etc. from other publications.
Upon acceptance of an article for publication, the authors will be asked to complete the ICMJE “Copyright Liability and Copyright Sharing Statement “(http://www.actamedicaportuguesa.com/info/AMP-NormasPublicacao.pdf) and the “Declaration of Potential Conflicts of Interest” (http:// www.icmje.org/conflicts-of-interest). An e-mail will be sent to the corresponding author to acknowledge receipt of the manuscript.
After publication, the authors are authorised to make their articles available in repositories of their institutions of origin, as long as they always mention where they were published and according to the Creative Commons license.