Endocarditis by Serratia marcescens: A Case Report and Literature Review

Ana Isabel FERREIRA, Fernando OLIVEIRA E SILVA, Jorge REIS, Marta HENRIQUES, Jorge ALMEIDA
Acta Med Port (In Press) • https://doi.org/10.20344/amp.16377

ABSTRACT

Serratia marcescens is a rarely implicated agent in endocarditis. We describe a case of a patient that underwent aortic and mitral valve replacement for Streptococcus agalactiae endocarditis. Four months later, he was readmitted with an ischemic stroke and fever. Physical examination and repetitive transthoracic echocardiogram were unremarkable. The initial blood cultures were negative. Due to sustained fever, vancomycin, gentamicin and piperacillin-tazobactam were initiated. Subsequent blood cultures, Serratia marcescens was isolated and antibiotics switched to ertapenem and gentamicin. In addition to cerebral embolus, a splenic embolus was found. The PET/CT revealed an abnormal hypercaptaion in the mitral bioprosthesis. The patient was treated for six weeks. There are no current specific recommendations regarding the treatment of Serratia marcescens endocarditis. It is widely accepted that treatment should be prolonged and include a combination of antimicrobial agents. Morbidity and mortality are high, particularly when there’s the need for surgical replacement. In this case, however, the patient ended-up only requiring medical treatment due to the favourable response.

Keywords: Endocarditis, Bacterial; Fever; Heart Valve Prosthesis; Positron-Emission Tomography; Serratia marcescens

RESUMO

A Serratia marcescens é um agente raro de endocardite. Descrevemos o caso de um doente submetido a substituição das válvulas aórtica e mitral por endocardite causada por Streptococcus agalactiae. Quatro meses após, é readmitido por evento cerebral isquémico e febre. Ao exame objetivo não evidenciava alterações e os ecocardiogramas transtorácicos eram normais. As hemoculturas colhidas à admissão foram estéreis. O doente manteve-se febril, iniciando-se empiricamente vancomicina, gentamicina e piperacilina-tazobactam. Após isolamento de Serratia marcescens em hemoculturas subsequentes, a antibioterapia foi ajustada para ertapenem e gentamicina. Além de um embolo cerebral, foi encontrada embolia esplênica e hipercaptação anormal na prótese mitral biológica em PET. Foi efetuado tratamento durante seis semanas. Não existem recomendações específicas sobre o tratamento de endocardite por Serratia marcescens, mas deve ser prolongado e com terapêutica combinada. A morbimortalidade é elevada, sobretudo quando há necessidade de cirurgia. Neste caso, a evolução clínica favorável do doente permitiu o tratamento médico exclusivo.

Palavras-chave: Endocardite Bacteriana; Febre; Próteses Valvulares Cardíacas; Serratia marcescens; Tomografia por Emissão de Positrons

INTRODUCTION

Serratia marcescens is a facultative anaerobic, Gram-negative bacillus, mostly associated with intravenous drug users (IVDU) and hospital-acquired infections.1 Serratia marcescens endocarditis is extremely rare (0.14% of all cases in a prospective cohort).1 In non-IVDU patients, it can be associated with immunosuppression, chronic disease, indwelling catheterization and presence of cardiac devices/prosthetic valves.2

We describe a case of healthcare-associated endocarditis caused by Serratia marcescens.

CASE REPORT

A 61-year-old man, smoker, with severe aortic stenosis, was admitted to hospital due to acute pulmonary oedema. He was diagnosed with mitral endocarditis caused by Streptococcus agalactiae. He received treatment with gentamicin 5 mg/kg/day for two weeks and ceftriaxone 2 g/day. After four weeks, he underwent mitral valve replacement with a bioprosthesis due to valvular insufficiency and aortic valve replacement. He had sterile valve and control blood cultures (BC), hence completing two more weeks of antibiotics. Two months later, he was diagnosed with non-small cell lung cancer stage IIB and a transthoracic echocardiogram detected a filiform structure in the mitral bioprosthesis and a thrombus in the left atrial posterior wall, for which he was hypocoagulated with warfarin.

Two months later, the patient presented to the emergency department with left homonymous hemianopia and fever. He had a temperature of 38.3°C, the remaining physical examination was unremarkable. The electrocardiogram showed sinus rhythm. The blood tests showed normal leukocyte count and C-reactive protein (CRP) level of 51 mg/L (< 3.0 mg/L). A brain computerized-tomography (CT) revealed an ischemic lesion in the left parietal-occipital region and smaller lesions in the
left and right parietal regions (Fig. 1). Upon admission, a transesophageal echocardiogram (TEE) documented a smaller thrombus and absence of valvular vegetations, abscess or ventricular dysfunction. A cardiac-CT did not display signs of inflammation and corroborated these findings. Three sets of BC were negative. The patient remained apyrexic and, in the presence of lung cancer as a possible aetiology, antibiotics were not started.

On the ninth day, the patient had recrudescence of fever and shivering. Blood pressure was 68/43 mmHg, pulse 105 bpm, temperature 39.6°C and he became disoriented. Neither new extra cardiac sounds or murmurs nor cutaneous changes were noticed. Laboratory data revealed a lactate level of 6.45 mmol/L (< 2.0 mmol/L), increased leukocyte count and CRP (138.9 mg/L). A chest radiography did not show any changes. The blood pressure responded to fluid resuscitation. He received empirical treatment with vancomycin 25 mg/kg/dose and gentamicin 5 mg/kg/day for possible endocarditis and piperacillin-tazobactam 4.5 g each tid for possible nosocomial infection. Two days later, Serratia marcescens, without antimicrobial resistance in vitro, was isolated in three sets of BC, while urine culture was sterile. Gentamicin was maintained, but the remaining antibiotics were switched to ertapenem 1 g/day. A thoracic-abdominal-pelvic-CT scan revealed a splenic infarct (Fig. 2). Repeated TEE showed overlapping results. 18F-fluorodeoxyglucose (18F-FDG) positron-emission-tomography (PET-CT) showed an abnormal hypercaptation in the inferior part of the mitral valve.

Because the patient had one major criterion (abnormal activity around the prosthetic valve) and four minor criteria (pre-disposing heart condition, fever, septic emboli and positive BC), the diagnosis of Serratia marcescens endocarditis was established, according to the modified European Society of Cardiology criteria. The patient’s favourable clinical evolution and subsequent sterile BC two days after commencing treatment allowed completion of the antibiotic scheme (gentamicin for two weeks due to acute kidney injury and ertapenem for six weeks), and enabled the administration of ertapenem in the outpatient clinic.

DISCUSSION

Serratia marcescens endocarditis was first described in 1951. Only 15 cases were reported since 1994 (Table 1). In nine cases, the risk factor for infection was IVDU; in the group of health-care-associated endocarditis only one had a prosthetic valve and one pacemaker. Similarly, most of the cases had either immunosuppressive or chronic disease. All patients had positive blood cultures. Three patients died due to systemic and cerebral embolisation; seven patients underwent surgery for foci control. Additionally, this microorganism has an unexplained trend for left-sided valvular involvement with a 68% mortality rate. Right-sided endocarditis was described in three cases: two were IVDU and one had percutaneous transhepatic portal embolization.

In the absence of a clinically evident infection, persistent fever and mild elevation of inflammatory parameters, in a patient with prosthetic cardiac valve, should trigger the suspicion of endocarditis, leading to an exhaustive investigation. In these cases, a negative TEE does not rule out the diagnosis and additional imaging should be performed, particularly PET-CT. The abnormal uptake of FDG in inflammatory tissue around the valve is highlighted in the PET-CT with a sensitivity of 70% - 100%, which increases the likelihood of a positive diagnosis.

After the definitive diagnosis, the choice of antimicrobial therapy posed another challenge as there are no current specific guidelines concerning this issue and existing data comes from case reports. Nevertheless, it is widely accepted that treatment should be prolonged, and that dual antimicrobial therapy should include synergic and bactericidal agents. The suggested treatment is a combination of a beta-lactam and an aminoglycoside for at least six weeks. Another challenge posed by *Serratia marcescens* infections is the presence of strains resistant to multiple antibiotics, namely penicillins, first-, second- and third-generation cephalosporins and, in some cases, carbapenems. These resistances may be induced by prior use of beta-lactams, which may be the reason why a carbapenem is a stronger option in many cases of *Serratia* bacteremia. Therefore, we opted to use carbapenem due to its favourable experience in the literature, with a higher number of successful cases compared with other antibiotics. Resistance is mainly mediated by production of chromosomal AmpC cephalosporinases and synthesis of beta-lactamases and carbapenemases. Concurrent administration of aminoglycosides leads to a rapid sterilization of the affected valve.

In most patients, antimicrobial therapy is insufficient and surgical treatment is needed due to poor prognosis and the pathogenicity of the microorganism. This may be recommended within the first seven to 10 days after beginning antimicrobial therapy. In contrast with the majority of cases described, surgery was deemed unnecessary in our patient as he remained asymptomatic with normal valve function after receiving antibiotic therapy. Despite the presence of a prosthetic valve, the causative agent, the patient’s comorbidities and the occurrence of cerebral septic emboli, our case may be an example that, in some selected patients and according to clinical evolution, antibiotic treatment may be sufficient.

This case highlights the importance of early identification and diagnosis in order for appropriate treatment to be initiated despite the lack of specific guidelines about this subject.

AUTHORS CONTRIBUTION

AIF: Follow up of the patient, literature research, draft of the manuscript.

FOS, JR, MH: Follow up of the patient, literature research, critical review of the manuscript.
JA: Follow up of the patient, final approval of the manuscript.

PROTECTION OF HUMANS AND ANIMALS
The authors declare that the procedures were followed according to the regulations established by the Clinical Research and Ethics Committee and to the Helsinki Declaration of the World Medical Association updated in 2013.

DATA CONFIDENTIALITY
The authors declare having followed the protocols in use at their working center regarding patients’ data publication.

PATIENT CONSENT
Obtained.

COMPETING INTERESTS
The authors have declared that no competing interests exist.

FUNDING SOURCES
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

REFERENCES
Figure 1 – Brain-CT showing ischemic lesion in the left parietal-occipital region

Figure 2 – Abdominal-CT scan revealing an enlarged spleen and an area of infarct in its superior lobe

An article accepted for publication available at www.actamedicaportuguesa.com

![Table 1 - Published cases of Serratia marcescens endocarditis since 1994](image-url)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Age / gender</th>
<th>Risk factor</th>
<th>Medical history</th>
<th>Location</th>
<th>Evolution</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>J Infect Dis 2007</td>
<td>50yo, female</td>
<td>Health-care associated</td>
<td>Non-Hodgkin lymphoma, central venous catheter</td>
<td>Native AV</td>
<td>Septic emboli b skin</td>
<td>ATB: azlocillin + gentamicin, six weeks + gentamicin two weeks + ciprofloxacin (duration not specified)</td>
<td>Clinical resolution</td>
</tr>
<tr>
<td>BMJ Case Rep 2009</td>
<td>43yo, female</td>
<td>Not known</td>
<td>Health-care associated</td>
<td>Native MV</td>
<td>CNS embolisation and abscess formation</td>
<td>ATB: ceftriaxone + ciprofloxacin, in two weeks + pacemaker explanation</td>
<td>Death</td>
</tr>
<tr>
<td>Intern Med 2012</td>
<td>67yo, male</td>
<td>Health-care associated</td>
<td>Diabetes mellitus, Hypertension</td>
<td>Native AV</td>
<td>Pacing wire</td>
<td>ATB: ceftriaxone + ciprofloxacin, (duration not specified) + local: cefazolin</td>
<td>Clinical resolution</td>
</tr>
<tr>
<td>J Infect Dis Clin Pract 2016</td>
<td>65yo, female</td>
<td>Health-care associated</td>
<td>Splenectomy</td>
<td>Native MV</td>
<td>No complication</td>
<td>ATB: ceftriaxone + ciprofloxacin, six weeks + valve replacement</td>
<td>Clinical resolution</td>
</tr>
<tr>
<td>BMJ Case Rep 2016</td>
<td>64yo, male</td>
<td>Not known</td>
<td>Health-care associated</td>
<td>Native MV</td>
<td>Splenectomy</td>
<td>ATB: ceftriaxone + ciprofloxacin, six weeks + valve replacement</td>
<td>Clinical resolution</td>
</tr>
<tr>
<td>BMJ Case Rep 2018</td>
<td>53yo, male</td>
<td>Health-care associated</td>
<td>Diabetes mellitus, Hypertension</td>
<td>Native MV</td>
<td>Prosthetic AV</td>
<td>ATB: cefuroxime + clindamycin + gentamicin one week</td>
<td>Death</td>
</tr>
<tr>
<td>BMJ Case Rep 2019</td>
<td>41yo, male</td>
<td>Health-care associated</td>
<td>Recent knee joint arthrocentesis</td>
<td>Native MV</td>
<td>IVU</td>
<td>ATB: cefuroxime + levofloxacin + gentamicin (duration not specified)</td>
<td>Clinical resolution</td>
</tr>
<tr>
<td>BMJ Case Rep 2020</td>
<td>46yo, male</td>
<td>Health-care associated</td>
<td>Bicuspid AV, Stanford's Type-B aortic dissection, IVDU</td>
<td>Native MV</td>
<td>IVDU</td>
<td>ATB: cefuroxime + levofoxacin + gentamicin four weeks + valve replacement</td>
<td>Clinical resolution</td>
</tr>
<tr>
<td>Aorta 2020</td>
<td>24yo, male</td>
<td>IVDU</td>
<td>Heart failure</td>
<td>Native MV</td>
<td>AV root abscess</td>
<td>ATB: meropenem (duration not specified) + valve replacement</td>
<td>Death</td>
</tr>
<tr>
<td>Artin Med 2020</td>
<td>33yo, male</td>
<td>IVDU</td>
<td>Hodgkin lymphoma, AV stenosis</td>
<td>Native AV</td>
<td>IVDU</td>
<td>ATB: cefuroxime + levofoxacin + gentamicin (duration not specified)</td>
<td>Clinical resolution</td>
</tr>
<tr>
<td>Cureus 2020</td>
<td>27yo, female</td>
<td>IVDU</td>
<td>Pulmonary septic emboli</td>
<td>Native AV</td>
<td>AV root abscess</td>
<td>ATB: meropenem (not stated) + ABT + valve replacement + pacemaker implantation</td>
<td>Clinical resolution</td>
</tr>
</tbody>
</table>

These were case reports included in PubMed about Serratia marcescens endocarditis, but only the last in the table reported the isolation of two microorganisms in blood cultures (Serratia marcescens and Staphylococcus aureus methicillin-susceptible).