Disease Caused by Filoviruses: An Update

Authors

DOI:

https://doi.org/10.20344/amp.21911

Keywords:

Communicable Diseases, Emerging, Ebolavirus, Filoviridae, Filoviridae Infections, Marburgvirus

Abstract

The Marburg and Ebola viruses belong to the Filoviridae family and are known to cause emerging zoonotic diseases. These viruses have a high case fatality rate and are easily transmissible from person to person, which makes them capable of triggering outbreaks, including in non-endemic regions, and are also considered agents of bioterrorism. Fruit bats are the natural reservoirs of these filoviruses. Transmission to humans occurs through direct contact with bodily fluids or tissues from infected animals or humans. The most severe form of filovirus disease manifests as mucocutaneous hemorrhage, often accompanied by multiorgan failure, which is the main cause of death. Traditionally, these diseases are classified in the group of viral hemorrhagic fevers, although this term is being abandoned, as there are not always hemorrhagic manifestations or fever in the patient’s clinical history. Currently, no specific antiviral treatment for filovirus disease exists, and the therapeutic approach consists of supportive measures. However, for the Zaire Ebola virus (EBOV), monoclonal antibodies have already been licensed for treatment and post-exposure prophylaxis, in addition to three vaccines available. Due to the public health importance and the possibility of cases outside Africa, this review aims to improve clinical knowledge and the approach to suspected cases of FD. Improved surveillance and preparedness for potential global outbreaks are essential measures to effectively respond to these public health threats and to ensure that healthcare professionals are well-informed and prepared to deal with these diseases.

Downloads

Download data is not yet available.

References

Martina BE, Osterhaus AD. “Filoviruses”: a real pandemic threat? EMBO Mol Med. 2009;1:10-8.

Liu Z, Liu Q, Wang H, Yao X. Severe zoonotic viruses carried by different species of bats and their regional distribution. Clin Microbiol Infect. 2024;30:206-10.

Slenczka W. Filovirus research: how it began. In: Mühlberger E, Hensley LL, Towner JS, editores. Marburg- and Ebolaviruses. Cham: Springer International Publishing; 2017. p.3-21.

Srivastava S, Sharma D, Kumar S, Sharma A, Rijal R, Asija A, et al. Emergence of Marburg virus: a global perspective on fatal outbreaks and clinical challenges. Front Microbiol. 2023;14:1239079.

Jacob ST, Crozier I, Fischer WA, Hewlett A, Kraft CS, Vega MA, et al. Ebola virus disease. Nat Rev Dis Primers. 2020;6:13.

Pigott DC. Hemorrhagic fever viruses. Crit Care Cli. 2005;21:765-83.

Srivastava S, Kumar S, Ashique S, Sridhar SB, Shareef J, Thomas S. Novel antiviral approaches for Marburg: a promising therapeutics in the pipeline. Front Microbiol. 2024;15:1387628.

Moso MA, Lim CK, Williams E, Marshall C, McCarthy J, Williamson DA. Prevention and post-exposure management of occupational exposure to Ebola virus. Lancet Infect Dis. 2024;24:e93-105.

Kuhn JH, Adachi T, Adhikari NK, Arribas JR, Bah IE, Bausch DG, et al. New filovirus disease classification and nomenclature. Nat Rev Microbiol. 2019;17:261-3.

Emanuel J, Marzi A, Feldmann H. Filoviruses: ecology, molecular biology, and evolution. In: Advances in virus research. Amsterdam: Elsevier; 2018. p.189-221.

Howley PM, Knipe DM. Emerging viruses. 7th ed. Philadelphia: Wolters Kluwer; 2021.

Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM. The pathogenesis of ebola virus disease. Annu Rev Pathol. 2017;12:387-418.

Slenczka W, Klenk HD. Forty years of Marburg virus. J Infect Dis. 2007;196:S131-5.

Centers for Disease Control and Prevention. History of Marburg disease outbreaks. Marburg virus disease. 2024. [consultado 2024 mai 24]. Disponível em: https://www.cdc.gov/marburg/outbreaks/index.html.

World Health Organization. Ebola haemorrhagic fever in Zaire, 1976. Bull World Health Organ. 1978;56:271-93.

Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, et al. Emergence of Zaire Ebola virus disease in Guinea. New Eng J Med. 2014;371:1418-25.

Piercy TJ, Smither SJ, Steward JA, Eastaugh L, Lever MS. The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol. J Appl Microbiol. 2010;109:1531-9.

Lawrence P, Danet N, Reynard O, Volchkova V, Volchkov V. Human transmission of Ebola virus. Curr Opin Virol. 2017;22:51-8.

Amman BR, Carroll SA, Reed ZD, Sealy TK, Balinandi S, Swanepoel R, et al. Seasonal pulses of marburg virus circulation in juvenile rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012;8:e1002877.

Pourrut X, Kumulungui B, Wittmann T, Moussavou G, Délicat A, Yaba P, et al. The natural history of Ebola virus in Africa. Microbes Infect. 2005;7:1005-14.

Simmons G. Filovirus entry. Adv Exp Med Biol. 2013;790:83-94.

Cao Z, Liu C, Peng C, Ran Y, Yao Y, Xiao G, et al. Ebola virus VP35 perturbs type I interferon signaling to facilitate viral replication. Virol Sin. 2023;38:922-30.

Martines RB, Ng DL, Greer PW, Rollin PE, Zaki SR. Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses. J Pathol. 2015;235:153-74.

Thorson A, Formenty P, Lofthouse C, Broutet N. Systematic review of the literature on viral persistence and sexual transmission from recovered Ebola survivors: evidence and recommendations. BMJ Open. 2016;6:e008859.

Hartman AL, Towner JS, Nichol ST. Ebola and Marburg hemorrhagic fever. Clin Lab Med. 2010;30:161-77.

Kuhn JH. Filoviruses: a compendium of 40 years of epidemiological, clinical, and laboratory studies. Vienna: Springer; 2008. p.411

Sprecher A, Van Herp M, Rollin PE. Clinical management of ebola virus disease patients in low-resource settings. Curr Top Microbiol Immunol. 2017;411:93-113.

Reisler R, Zeng X, Schellhase C, Bearss J, Warren T, Trefry J, et al. Ebola virus causes intestinal tract architectural disruption and bacterial invasion in non-human primates. Viruses. 2018;10:513.

Rewar S, Mirdha D. Transmission of ebola virus disease: an overview. Ann Glob Health. 2014;80:444-51.

Frieden TR, Damon I, Bell BP, Kenyon T, Nichol S. Ebola 2014 - new challenges, new global response and responsibility. New Eng J Med. 2014;371:1177-80.

World Health Organization. Ebola and Marburg virus outbreak toolbox. 2022. [consultado 2024 mai 24]. Disponível em: https://www.who.int/emergencies/outbreak-toolkit/disease-outbreak-toolboxes/ebola-and-marburg-virus-outbreak-toolbox.

Chavez S, Koyfman A, Gottlieb M, Brady WJ, Carius BM, Liang SY, et al. Ebola virus disease: a review for the emergency medicine clinician. A J Emerg Med. 2023;70:30-40.

Bettini A, Lapa D, Garbuglia AR. Diagnostics of Ebola virus. Front Public Health. 2023;11:1123024.

Direção-Geral da Saúde. Doença por vírus Ébola. Definição de caso e procedimentos gerais. 2019. [consultado 2024 ago 10]. Disponível em: https://www.dgs.pt/directrizes-da-dgs/orientacoes-e-circulares-informativas/orientacao-n-0032019-de-20072019-pdf.aspx.

European Centre for Disease Prevention and Control. Algorithm for laboratory diagnosis of Ebola virus disease. 2014. [consultado 2024 mai 24]. Disponível em: https://www.ecdc.europa.eu/en/publications-data/algorithm-laboratory-diagnosis-ebola-virus-disease.

Sivanandy P, Jun PH, Man LW, Wei NS, Mun NF, Yii CA, et al. A systematic review of Ebola virus disease outbreaks and an analysis of the efficacy and safety of newer drugs approved for the treatment of Ebola virus disease by the US Food and Drug Administration from 2016 to 2020. J Infect Public Health. 2022;15:285-92.

Feldmann H, Sprecher A, Geisbert TW. Ebola. N Engl J Med. 2020;382:1832-42.

El Ayoubi LW, Mahmoud O, Zakhour J, Kanj SS. Recent advances in the treatment of Ebola disease: a brief overview. PLoS Pathog. 2024;20:e1012038.

Rijal P, Donnellan FR. A review of broadly protective monoclonal antibodies to treat Ebola virus disease. Curr Opin Virol. 2023;61:101339.

Mulangu S, Dodd LE, Davey RT, Mbaya OT, Proschan M, Mukadi D, et al. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med. 2019;381:2293-303.

Regules JA, Beigel JH, Paolino KM, Voell J, Castellano AR, Hu Z, et al. A recombinant vesicular stomatitis virus Ebola vaccine. New Eng J Med. 2017;376:330-41.

Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ, Egger M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. 2017;389:505-18.

Malenfant JH, Joyce A, Choi MJ, Cossaboom CM, Whitesell AN, Harcourt BH, et al. Use of Ebola vaccine: expansion of recommendations of the advisory committee on immunization practices to include two additional populations - United States, 2021. MMWR Morb Mortal Wkly Rep. 2022;71:290-2.

Adriaensen W, Oostvogels S, Levy Y, Leigh B, Kavunga-Membo H, Watson-Jones D. Urgent considerations for booster vaccination strategies against Ebola virus disease. Lancet Infect Dis. 2024:S1473-3099(24)00210-X.

Centers for Disease Control and Prevention. Interim guidance for preparing Ebola assessment hospitals. Ebola. 2024. [consultado 2024 mai 24]. Disponível em: https://www.cdc.gov/ebola/php/healthcare-facilities/interim-guidance-for-preparing-ebola-assessment-hospitals.html.

World Health Organization. How to conduct safe and dignified burial of a patient who has died from suspected or confirmed Ebola or Marburg virus disease. 2017. [consultado 2024 ago 11]. Disponível em: https://iris.who.int/bitstream/handle/10665/137379/WHO_EVD_GUIDANCE_Burials_14.2_eng.pdf?sequence=1.

Published

2024-11-20

How to Cite

1.
Marx de Andrade R, Paulos A, Valadas E, Laerte Pinto Junior V. Disease Caused by Filoviruses: An Update. Acta Med Port [Internet]. 2024 Nov. 20 [cited 2024 Nov. 23];. Available from: https://actamedicaportuguesa.com/revista/index.php/amp/article/view/21911

Issue

Section

Review Articles