Coadministração de Albumina e Furosemida na Insuficiência Cardíaca Aguda com Resistência aos Diuréticos
DOI:
https://doi.org/10.20344/amp.17714Palavras-chave:
Albuminas, Diuréticos, Furosemida, Inibidores de Simportadores de Cloreto de Sódio e Potássio, Insuficiência Cardíaca, Resistência a MedicamentosResumo
A insuficiência cardíaca aguda é uma causa frequente de internamento hospitalar em Portugal, com tendência a aumentar devido ao envelhecimento da população. Apesar de a maioria dos internamentos por insuficiência cardíaca aguda ser motivada por quadros congestivos, nem todos os doentes apresentam um fenótipo congestivo, o que reflecte a complexidade de um processo com múltiplas vias fisiopatológicas. A utilização de diuréticos, habitualmente diuréticos de ansa, constitui a base do tratamento da congestão. No entanto, muitos doentes desenvolvem resistência, constituindo assim um desafio sem solução consensual até à data, apesar do extenso debate ao longo dos anos. Apesar da sua utilização frequente na prática clínica, a coadministração de albumina e furosemida permanece controversa na gestão de doentes com insuficiência cardíaca aguda, hipoalbuminémia e resistência aos diuréticos. Esta revisão aborda os mecanismos fisiopatológicos da congestão nesses doentes e explora a base teórica que suporta a coadministração de albumina e furosemida no respectivo contexto clínico. Pretende-se clarificar o potencial benefício da estratégia combinada nesta
população específica e identificar possíveis lacunas na literatura que possam ser alvo de estudos futuros.
Downloads
Referências
World Health Organization. Ambulatory care sensitive conditions in Portugal. Geneve: WHO; 2016.
Ellison DH, Felker GM. Diuretic treatment in heart failure. New Eng J Med. 2017;377:1964-75. DOI: https://doi.org/10.1056/NEJMra1703100
Ravnan SL, Ravnan MC, Deedwania PC. Diuretic resistance and strategies to overcome resistance in patients with congestive heart failure. Congest Heart Fail. 2002;8:80-5. DOI: https://doi.org/10.1111/j.1527-5299.2002.0758.x
Ellison DH. Mechanistic insights into loop diuretic responsiveness in heart failure. Clin J Am Soc Nephrol. 2019;14:650-2. DOI: https://doi.org/10.2215/CJN.03590319
Cox ZL, Lenihan DJ. Loop diuretic resistance in heart failure: resistance etiology-based strategies to restoring diuretic efficacy. J Card Fail. 2014;20:611-22. DOI: https://doi.org/10.1016/j.cardfail.2014.05.007
Mullens W, Damman K, Harjola VP, Mebazaa A, Brunner-La Rocca HP, Martens P, et al. The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:137-55. DOI: https://doi.org/10.1002/ejhf.1369
Duffy M, Jain S, Harrell N, Kothari N, Reddi A. Albumin and furosemide combination for management of edema in nephrotic syndrome: a review of clinical studies. Cells. 2015;4:622-30. DOI: https://doi.org/10.3390/cells4040622
Ter Maaten JM, Valente MA, Metra M, Bruno N, O’Connor CM, Ponikowski P, et al. A combined clinical and biomarker approach to predict diuretic response in acute heart failure. Clin Res Cardiol. 2016;105:145-53. DOI: https://doi.org/10.1007/s00392-015-0896-2
Monzo L, Kotrc M, Benes J, Sedlacek K, Jurcova I, Franekova J, et al. Clinical and humoral determinants of congestion in heart failure: potential role of adiponectin. Kidney Blood Press Res. 2019;44:1271-84. DOI: https://doi.org/10.1159/000502975
Fudim M, Hernandez AF, Felker GM. Role of volume redistribution in the congestion of heart failure. J Am Heart Assoc. 2017;6. DOI: https://doi.org/10.1161/JAHA.117.006817
Ellison DH. Diuretic therapy in congestive heart failure. Cardiology. 2001;96:132-43. DOI: https://doi.org/10.1159/000047397
Jardim SI, Ramos dos Santos L, Araújo I, Marques F, Branco P, Gaspar A, et al. A 2018 overview of diuretic resistance in heart failure. Rev Port Cardiol. 2018;37:935-45. DOI: https://doi.org/10.1016/j.repc.2018.03.014
Singh D, Shrestha K, Testani JM, Verbrugge FH, Dupont M, Mullens W, et al. Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure. J Card Fail. 2014;20:392-9. DOI: https://doi.org/10.1016/j.cardfail.2014.03.006
Ter Maaten JM, Damman K, Hanberg JS, Givertz MM, Metra M, O’Connor CM, et al. Hypochloremia, diuretic resistance, and outcome in patients with acute heart failure. Circ Heart Fail. 2016;9:1-9. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.116.003109
Kumar D, Bagarhatta R. Fractional excretion of sodium and its association with prognosis of decompensated heart failure patients. J Clin Diagn Res. 2015;9:OC01-3. DOI: https://doi.org/10.7860/JCDR/2015/11532.5736
Ter Maaten JM, Dunning AM, Valente MA, Damman K, Ezekowitz JA, Califf RM, et al. Diuretic response in acute heart failure-an analysis from ASCENDHF. Am Heart J. 2015;170:313-21. DOI: https://doi.org/10.1016/j.ahj.2015.05.003
Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail. 2011;4:669-75. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.111.961789
Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiology. 2008;108:735-48. DOI: https://doi.org/10.1097/ALN.0b013e3181672607
Birch DJ, Turmaine M, Boulos PB, Burnstock G. Sympathetic innervation of human mesenteric artery and vein. J Vasc Res. 2008;45:323-32. DOI: https://doi.org/10.1159/000119095
Hainsworth R. Vascular capacitance: its control and importance. Rev Physiol Biochem Pharmacol. 1986;105:101-73. DOI: https://doi.org/10.1007/BFb0034498
Floras JS. Sympathetic nervous system activation in human heart failure. Clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375-85. DOI: https://doi.org/10.1016/j.jacc.2009.03.061
Creager MA, Hirsch AT, Dzau VJ, Nabel EG, Cutler SS, Colucci WS. Baroreflex regulation of regional blood flow in congestive heart failure. Am J Physiol. 1990;258:H1409-14. DOI: https://doi.org/10.1152/ajpheart.1990.258.5.H1409
Rowell LB. Reflex control of regional circulations in humans. J Auton Nerv Syst. 1984;11:101-14. DOI: https://doi.org/10.1016/0165-1838(84)90069-9
Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589-96. DOI: https://doi.org/10.1016/j.jacc.2008.05.068
Husain-Syed F, Gröne HJ, Assmus B, Bauer P, Gall H, Seeger W, et al. Congestive nephropathy: a neglected entity? Proposal for diagnostic criteria and future perspectives. ESC Heart Fail. 2021;8:183-203. DOI: https://doi.org/10.1002/ehf2.13118
Husain-Syed F, McCullough PA, Birk HW, Renker M, Brocca A, Seeger W, et al. Cardio-pulmonary-renal interactions: a multidisciplinary approach. J Am Coll Cardiol. 2015;65:2433-48. DOI: https://doi.org/10.1016/j.jacc.2015.04.024
Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, et al. Elevated intra-abdominal pressure in acute decompensated heart failure. A potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51:300-6. DOI: https://doi.org/10.1016/j.jacc.2007.09.043
Iba T, Levy JH. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost. 2019;17:283-94. DOI: https://doi.org/10.1111/jth.14371
Aldecoa C, Llau JV, Nuvials X, Artigas A. Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: a review. Ann Intensive Care. 2020;10:1-12. DOI: https://doi.org/10.1186/s13613-020-00697-1
Rabelink TJ, de Zeeuw D. The glycocalyx - Linking albuminuria with renal and cardiovascular disease. Nat Rev Nephrol. 2015;11:667-76. DOI: https://doi.org/10.1038/nrneph.2015.162
Curry FE, Michel CC. The colloid osmotic pressure across the glycocalyx: role of interstitial fluid sub-compartments in trans-vascular fluid exchange in skeletal muscle. Front Cell Dev Biol. 2021;9:1-15. DOI: https://doi.org/10.3389/fcell.2021.729873
Wilcox CS. New insights into diuretic use in patients with chronic renal disease. J Am Soc Nephrol. 2002;13:798-805. DOI: https://doi.org/10.1681/ASN.V133798
Prenner SB, Kumar A, Zhao L, Cvijic ME, Basso M, Spires T, et al. Effect of serum albumin levels in patients with heart failure with preserved ejection fraction (from the TOPCAT Trial). Am J Cardiol. 2020;125:575-82. DOI: https://doi.org/10.1016/j.amjcard.2019.11.006
Yamada S, Arase H, Yoshida H, Kitamura H, Tokumoto M, Taniguchi M, et al. Malnutrition-inflammation complex syndrome and bone fractures and cardiovascular disease events in patients undergoing hemodialysis: The Q-Cohort Study. Kidney Med. 2022;4:100408. DOI: https://doi.org/10.1016/j.xkme.2022.100408
Arques S. Albumine sérique et insuffisance cardiaque: données récentes sur un nouveau paradigme. Ann Cardiol Angeiol. 2011;60:272-8. DOI: https://doi.org/10.1016/j.ancard.2011.07.006
Grodin JL, Lala A, Stevens SR, DeVore AD, Cooper LB, AbouEzzeddine OF, et al. Clinical implications of serum albumin levels in acute heart failure: insights from DOSE-AHF and ROSE-AHF. J Card Fail. 2016;22:884-90. DOI: https://doi.org/10.1016/j.cardfail.2016.01.015
Haller C. Hypoalbuminemia in renal failure: pathogenesis and therapeutic considerations. Kidney Blood Press Res. 2006;28:307-10. DOI: https://doi.org/10.1159/000090185
Liu M, Chan CP, Yan BP, Zhang Q, Lam YY, Li RJ, et al. Albumin levels predict survival in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2012;14:39-44. DOI: https://doi.org/10.1093/eurjhf/hfr154
Peterson EJ, Ng TM, Patel KA, Lou M, Elkayam U. Association of admission vs. nadir serum albumin concentration with short-term treatment outcomes in patients with acute heart failure. J Int Med Res. 2018;46:3665-74. DOI: https://doi.org/10.1177/0300060518777349
Chalasani N, Gorski JC, Horlander JC, Craven R, Hoen H, Maya J, et al. Effects of albumin/furosemide mixtures on responses to furosemide in hypoalbuminemic patients. J Am Soc Nephrol. 2001;12:1010-6. DOI: https://doi.org/10.1681/ASN.V1251010
Fliser D, Zurbrüggen I, Mutschler E, Bischoff I, Nussberger J, Franek E, et al. Coadministration of albumin and furosemide in patients with the nephrotic syndrome. Kidney Int. 1999;55:629-34. DOI: https://doi.org/10.1046/j.1523-1755.1999.00298.x
Phakdeekitcharoen B, Boonyawat K. The added-up albumin enhances the diuretic effect of furosemide in patients with hypoalbuminemic chronic kidney disease: a randomized controlled study. BMC Nephrol. 2012;13:1-9. DOI: https://doi.org/10.1186/1471-2369-13-92
Bleske BE, Clark MM, Wu AH, Dorsch MP. The effect of continuous infusion loop diuretics in patients with acute decompensated heart failure with hypoalbuminemia. J Cardiovasc Pharmacol Ther. 2013;18:334-7. DOI: https://doi.org/10.1177/1074248412474347
Heart Failure Society of America. Executive summary: HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16:475-539. DOI: https://doi.org/10.1016/j.cardfail.2010.04.005
Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the american college of cardiology foundation/american heart association task force on practice guidelines. Circulation. 2013;128:240-327. DOI: https://doi.org/10.1161/CIR.0b013e31829e8776
Makhoul N, Riad T, Friedstrom S, Zveibil FR. Frusemide in pulmonary oedema: continuous versus intermittent. Clin Intensive Care. 1997;8:273-6. DOI: https://doi.org/10.3109/tcic.8.6.273.276
Martin GS, Moss M, Wheeler AP, Mealer M, Morris JA, Bernard GR. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med. 2005;33:1681-7. DOI: https://doi.org/10.1097/01.CCM.0000171539.47006.02
Oczkowski SJ, Mazzetti I. Colloids to improve diuresis in critically ill patients: a systematic review. J Intensive Care. 2014;2:1-6. DOI: https://doi.org/10.1186/2052-0492-2-37
Oczkowski SJ, Klotz L, Mazzetti I, Alshamsi F, Chen ML, Foster G, et al. Furosemide and albumin for diuresis of edema (FADE): a parallel-group, blinded, pilot randomized controlled trial. J Crit Care. 2018;48:462-7. DOI: https://doi.org/10.1016/j.jcrc.2018.07.020
Arques S, Ambrosi P. Human serum albumin in the clinical syndrome of heart failure. J Card Fail. 2011;17:451-8. DOI: https://doi.org/10.1016/j.cardfail.2011.02.010
Clarke MM, Dorsch MP, Kim S, Aaronson KD, Koelling TM, Bleske BE. Baseline albumin is associated with worsening renal function in patients with acute decompensated heart failure receiving continuous infusion loop diuretics. Pharmacotherapy. 2013;33:583-8. DOI: https://doi.org/10.1002/phar.1241
Kirchner KA, Voelker JR, Brater DC. Binding inhibitors restore furosemide potency in tubule fluid containing albumin. Kidney Int. 1991;40:418-24. DOI: https://doi.org/10.1038/ki.1991.228
Inoue M, Okajima K, Itoh K, Ando Y, Watanabe N, Yasaka T, et al. Mechanism of furosemide resistance in analbuminemic rats and hypoalbuminemic patients. Kidney Int. 1987;32:198-203. DOI: https://doi.org/10.1038/ki.1987.192
Charokopos A, Griffin M, Rao VS, Inker L, Sury K, Asher J, et al. Serum and urine albumin and response to loop diuretics in heart failure. Clin J Am Soc Nephrol. 2019;14:712-8. DOI: https://doi.org/10.2215/CJN.11600918
Doungngern T, Huckleberry Y, Bloom JW, Erstad B. Effect of albumin on diuretic response to furosemide in patients with hypoalbuminemia. Am J Crit Care. 2012;21:280-6. DOI: https://doi.org/10.4037/ajcc2012999
Kitsios GD, Mascari P, Ettunsi R, Gray AW. Co-administration of furosemide with albumin for overcoming diuretic resistance in patients with hypoalbuminemia: a meta-analysis. J Crit Care. 2014;29:253-9. DOI: https://doi.org/10.1016/j.jcrc.2013.10.004
Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364:797-805. DOI: https://doi.org/10.1056/NEJMoa1005419
Chen HH, Anstrom KJ, Givertz MM, Stevenson LW, Semigran MJ, Goldsmith SR, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA. 2013;310:2533-43. DOI: https://doi.org/10.1001/jama.2013.282190
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2023 Acta Médica Portuguesa
Este trabalho encontra-se publicado com a Creative Commons Atribuição-NãoComercial 4.0.
Todos os artigos publicados na AMP são de acesso aberto e cumprem os requisitos das agências de financiamento ou instituições académicas. Relativamente à utilização por terceiros a AMP rege-se pelos termos da licença Creative Commons ‘Atribuição – Uso Não-Comercial – (CC-BY-NC)’.
É da responsabilidade do autor obter permissão para reproduzir figuras, tabelas, etc., de outras publicações. Após a aceitação de um artigo, os autores serão convidados a preencher uma “Declaração de Responsabilidade Autoral e Partilha de Direitos de Autor “(http://www.actamedicaportuguesa.com/info/AMP-NormasPublicacao.pdf) e a “Declaração de Potenciais Conflitos de Interesse” (http://www.icmje.org/conflicts-of-interest) do ICMJE. Será enviado um e-mail ao autor correspondente, confirmando a receção do manuscrito.
Após a publicação, os autores ficam autorizados a disponibilizar os seus artigos em repositórios das suas instituições de origem, desde que mencionem sempre onde foram publicados e de acordo com a licença Creative Commons