Regressão Logística: Limitações na Estimação de Medidas de Associação com Desfechos de Saúde Binários

Autores

  • Lara Pinheiro-Guedes Institute of Hygiene and Tropical Medicine. Universidade NOVA de Lisboa. Lisbon; Public Health Unit. Unidade Local de Saúde do Tâmega e Sousa. Marco de Canaveses. https://orcid.org/0000-0002-1083-1719
  • Clarisse Martinho Public Health Unit. Unidade Local de Saúde do Tâmega e Sousa. Marco de Canaveses.
  • Maria Rosário O. Martins Global Health and Tropical Medicine. Institute of Hygiene and Tropical Medicine. Universidade NOVA de Lisboa. Lisbon.

DOI:

https://doi.org/10.20344/amp.21435

Palavras-chave:

Avaliação de Processos e Resultados em Cuidados de Saúde, Distribuição de Poisson, Modelos Estatísticos, Modelos Logísticos, Rácio de Probabilidades

Resumo

Introdução: A regressão logística é frequentemente utilizada para estimar medidas de associação entre uma exposição, determinante de saúde ou intervenção e um desfecho binário. No entanto, quando o desfecho é frequente (> 10%), estas estimativas podem ser enviesadas. Apesar de existirem modelos estatísticos alternativos, muitos estudos continuam a aplicar modelos de regressão logística indiscriminadamente. O objetivo deste estudo foi comparar as estimativas e o ajuste de modelos de regressão logística, log-binomial e Poisson robustos, em estudos transversais com desfechos binários frequentes.
Métodos: Realizaram-se dois estudos transversais. O Estudo 1 foi um estudo representativo a nível nacional sobre o impacto da poluição atmosférica na saúde mental. O Estudo 2 foi um estudo local sobre o acesso de imigrantes a serviços de urgência. Obtiveram-se odds ratio (OR) através de regressões logísticas e razões de prevalência (RP) através de modelos log-binomiais e Poisson robustos. Foram ainda obtidos intervalos de confiança a 95% (IC 95%), suas amplitudes, os erros-padrão (EP) das estimativas e comparados os valores Akaike Information Criteria (AIC).
Resultados: No Estudo 1, a OR (IC 95%) foi de 1,015 (0,970 - 1,063) e a RP (IC 95%) obtida através do modelo de Poisson robusto foi de 1,012 (0,979 - 1,045). O modelo de regressão log-binomial não convergiu. No Estudo 2, a OR (IC 95%) foi de 1,584 (1,026 - 2,446), a RP (IC 95%) para o modelo de regressão log-binomial foi de 1,217 (0,978 - 1,515) e para o modelo de Poisson robusto foi de 1,130 (1,013 - 1,261). Os IC 95%, as suas amplitudes e os EP das OR foram superiores ao das RP, em ambos os estudos. No entanto, no Estudo 2, o valor do AIC foi inferior no modelo de regressão logística.
Conclusão: As OR sobrestimaram as RP, com IC 95% mais amplos e EP superiores. A magnitude da sobrestimação foi tanto maior quanto mais prevalente o desfecho em estudo, em linha com estudos prévios. No Estudo 2, a regressão logística foi a que melhor se ajustou aos dados. Este exemplo ilustra a necessidade de avaliar vários critérios para selecionar o modelo estatístico mais apropriado. Os modelos de Poisson robustos são uma alternativa viável em estudos transversais com desfechos binários frequentes e evitam o problema de não convergência dos modelos log-binomiais.

Downloads

Não há dados estatísticos.

Referências

Hosmer Jr, Lemeshow S, Sturdivant RX. Applied logistic regression. 3rd ed. Hoboken: John Wiley & Sons; 2013.

Lash TL, VanderWeele TJ, Haneuse S, Rothman KJ. Modern epidemiology. Philadelphia: Lippincott Williams & Wilkins; 2020.

Celentano D, Szklo M. Gordis epidemiology. Amsterdam: Elsevier; 2020.

Tamhane AR, Westfall AO, Burkholder GA, Cutter GR. Prevalence odds ratio versus prevalence ratio: choice comes with consequences. Stat Med. 2016;35:5730-5.

Knol MJ, Le Cessie S, Algra A, Vandenbroucke JP, Groenwold RH. Overestimation of risk ratios by odds ratios in trials and cohort studies: alternatives to logistic regression. CMAJ. 2012;184:895-9.

Petersen MR, Deddens JA. A comparison of two methods for estimating prevalence ratios. BMC Med Res Methodol. 2008;8:9.

McCullagh P. Generalized linear models. New York: Routledge; 2019.

Barros AJ, Hirakata VN. Alternatives for logistic regression in crosssectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol. 2003;3:21.

Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. New York: John Wiley & Sons; 2003.

Cavanaugh JE, Neath AA. The Akaike information criterion: background, derivation, properties, application, interpretation, and refinements. WIREs Comp Stats. 2019;11:e1460.

Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8:14.

World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021.[cited 2023 Aug 06]. Available from: https://iris.who.int/bitstream/handle/10665/345329/9789240034228- eng.pdf?sequence=1&isAllowed=y.

Braithwaite I, Zhang S, Kirkbride JB, Osborn DPJ, Hayes JF. Air pollution (particulate matter) exposure and associations with depression, anxiety, bipolar, psychosis and suicide risk: a systematic review and metaanalysis. Environ Health Perspect. 2019;127:126002.

Borroni E, Pesatori AC, Bollati V, Buoli M, Carugno M. Air pollution exposure and depression: a comprehensive updated systematic review and meta-analysis. Environ Pollut. 2022;292:118245.

Zeng Y, Lin R, Liu L, Liu Y, Li Y. Ambient air pollution exposure and risk of depression: a systematic review and meta-analysis of observational studies. Psychiatry Res. 2019;276:69-78.

Liu Q, Wang W, Gu X, Deng F, Wang , Lin H, et al. Association between particulate matter air pollution and risk of depression and suicide: a systematic review and meta-analysis. Environ Sci Pollut Res Int. 2021;28:9029-49.

Trushna T, Dhiman V, Raj D, Tiwari RR. Effects of ambient air pollution on psychological stress and anxiety disorder: a systematic review and meta-analysis of epidemiological evidence. Rev Environ Health. 2021;36:501-21.

Cuijpers P, Miguel C, Ciharova M, Kumar M, Brander L, Kumar P, et al. Impact of climate events, pollution, and green spaces on mental health: an umbrella review of meta-analyses. Psychol Med. 2023;53:638-53.

Stewart AL, Greenfield S, Hays RD, Wells K, Rogers WH, Berry SD, et al. Functional status and well-being of patients with chronic conditions. Results from the Medical Outcomes Study. JAMA. 1989;262:907-13.

Stewart AL, Hays RD, Ware JE, Jr. The MOS short-form general health survey. Reliability and validity in a patient population. Med Care. 1988;26:724-35.

Berwick DM, Murphy JM, Goldman PA, Ware JE Jr., Barsky AJ, Weinstein MC. Performance of a five-item mental health screening test. Med Care. 1991;29:169-76.

Nunes B, Barreto M, Gil AP, Kislaya I, Namorado S, Antunes L, et al. The first Portuguese national health examination survey (2015): design, planning and implementation. J Public Health. 2019;41:511-7.

Gaio V, Dias CM. Association between ambient air pollution exposure and biomarkers of cardiovascular risk: link between the first Portuguese health examination survey and the air quality data. [cited 2023 Aug 12]. Available from: https://run.unl.pt/handle/10362/143849.

Gaio V, Roquette R, Monteiro A, Ferreira J, Rafael S, Dias CM, et al. Exposure to ambient particulate matter increases blood count parameters with potential to mediate a cardiovascular event: results from a population-based study in Portugal. Air Qual Atmos Hlth. 2021;14:1189-202.

Gaio V, Roquette R, Monteiro A, Ferreira J, Matias Dias C, Nunes B. Investigating the association between ambient particulate matter (PM(10)) exposure and blood pressure values: Results from the link between the Portuguese Health Examination Survey and air quality data. Rev Port Cardiol. 2023;42:251-8.

Gaio V, Roquette R, Monteiro A, Ferreira J, Lopes D, Dias CM, et al. PM10 exposure interacts with abdominal obesity to increase blood triglycerides: a cross-sectional linkage study. Eur J Public Health. 2022;32:281-8.

Ribeiro AI, Launay L, Guillaume E, Launoy G, Barros H. The Portuguese version of the European Deprivation Index: development and association with all-cause mortality. PLoS One. 2018;13:e0208320.

Instituto Nacional de Estatística. Censos 2021 dissemination platform (definitive results). [cited 2023 Sep 10]. Available from: https://censos. ine.pt/xportal/xmain?xpgid=censos21_produtos&xpid=CENSOS21&xlang=ptdb_censos_2021.html.

Buja A, Fusco M, Furlan P, Bertoncello C, Baldovin T, Casale P, et al. Characteristics, processes, management and outcome of accesses to accident and emergency departments by citizenship. Int J Public Health. 2014;59:167-74.

Muggli Z, Mertens T, Amado R, Teixeira AL, Vaz D, Pires M, et al. Cohort profile: health trajectories of immigrant children (CRIAS)-a prospective cohort study in the metropolitan area of Lisbon, Portugal. BMJ Open. 2022;12:e061919.

Graetz V, Rechel B, Groot W, Norredam M, Pavlova M. Utilization of health care services by migrants in Europe-a systematic literature review. Br Med Bull. 2017;121:5-18.

Norredam M, Krasnik A, Moller Sorensen T, Keiding N, Joost Michaelsen J, Sonne Nielsen A. Emergency room utilization in Copenhagen: a comparison of immigrant groups and Danish-born residents. Scand J Public Health. 2004;32:53-9.

Ruud SE, Hjortdahl P, Natvig B. Reasons for attending a general emergency outpatient clinic versus a regular general practitioner - a survey among immigrant and native walk-in patients in Oslo, Norway. Scand J Prim Health Care. 2017;35:35-45.

Gimeno-Feliu LA, Pastor-Sanz M, Poblador-Plou B, Calderon-Larranaga A, Diaz E, Prados-Torres A. Overuse or underuse? Use of healthcare services among irregular migrants in a north-eastern Spanish region. Int J Equity Health. 2021;20:41.

Schoevers MA, Loeffen MJ, van den Muijsenbergh ME, Lagro-Janssen AL. Health care utilisation and problems in accessing health care of female undocumented immigrants in the Netherlands. Int J Public Health. 2010;55:421-8.

Gimeno-Feliu LA, Calderon-Larranaga A, Diaz E, Poblador-Plou B, Macipe-Costa R, Prados-Torres A. Global healthcare use by immigrants in Spain according to morbidity burden, area of origin, and length of stay. BMC Public Health. 2016;16:450.

Dias S, Gama A, Cortes M, de Sousa B. Healthcare-seeking patterns among immigrants in Portugal. Health Soc Care Community. 2011;19:514-21.

Sauzet O, David M, Naghavi B, Borde T, Sehouli J, Razum O. Adequate utilization of emergency services in Germany: is there a differential by migration background? Front Public Health. 2020;8:613250.

Tzogiou C, Boes S, Brunner B. What explains the inequalities in health care utilization between immigrants and non-migrants in Switzerland? BMC Public Health. 2021;21:530.

Coutinho LM, Scazufca M, Menezes PR. Methods for estimating prevalence ratios in cross-sectional studies. Rev Saude Publica. 2008;42:992-8.

Lee J, Tan CS, Chia KS. A practical guide for multivariate analysis of dichotomous outcomes. Ann Acad Med Singap. 2009;38:714-9.

Behrens T, Taeger D, Wellmann J, Keil U. Different methods to calculate effect estimates in cross-sectional studies. A comparison between prevalence odds ratio and prevalence ratio. Methods Inf Med. 2004;43:505-9.

Martinez BA, Leotti VB, Silva GS, Nunes LN, Machado G, Corbellini LG. Odds ratio or prevalence ratio? An overview of reported statistical methods and appropriateness of interpretations in cross-sectional studies with dichotomous outcomes in veterinary medicine. original research. Front Vet Sci. 2017;4:193.

Gnardellis C, Notara V, Papadakaki M, Gialamas V, Chliaoutakis J. Overestimation of relative risk and prevalence ratio: misuse of logistic modeling. Diagnostics. 2022;12:2851.

Williamson T, Eliasziw M, Fick GH. Log-binomial models: exploring failed convergence. Emerg Themes Epidemiol. 2013;10:14.

Reichenheim ME, Coutinho ES. Measures and models for causal inference in cross-sectional studies: arguments for the appropriateness of the prevalence odds ratio and related logistic regression. BMC Med Res Methodol. 2010;10:66.

Publicado

2024-10-01

Como Citar

1.
Pinheiro-Guedes L, Martinho C, O. Martins MR. Regressão Logística: Limitações na Estimação de Medidas de Associação com Desfechos de Saúde Binários. Acta Med Port [Internet]. 1 de Outubro de 2024 [citado 22 de Novembro de 2024];37(10):697-705. Disponível em: https://actamedicaportuguesa.com/revista/index.php/amp/article/view/21435

Edição

Secção

Original